基于遗传算法解决组卷问题,给出python代码
时间: 2024-01-16 13:05:05 浏览: 102
0-1 用遗传 算法 进行背包逼近_python_代码_下载
以下是一个简单的基于遗传算法解决组卷问题的Python代码示例:
```python
import random
# 定义题目库和需要选择的题目数量
question_bank = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I']
num_questions = 5
# 定义遗传算法的参数
population_size = 10
mutation_rate = 0.1
generations = 100
# 定义适应度函数,计算一个个体的适应度
def fitness(individual):
score = 0
for question in individual:
if question in ['A', 'B', 'C']:
score += 3
elif question in ['D', 'E']:
score += 4
elif question in ['F', 'G']:
score += 5
elif question == 'H':
score += 6
elif question == 'I':
score += 7
return score
# 创建初始种群
population = []
for i in range(population_size):
individual = random.sample(question_bank, num_questions)
population.append(individual)
# 进化过程
for generation in range(generations):
# 计算每个个体的适应度
fitness_scores = [fitness(individual) for individual in population]
# 找到适应度最高的个体
best_individual_index = fitness_scores.index(max(fitness_scores))
best_individual = population[best_individual_index]
print('Generation', generation, '- Best individual:', best_individual, '- Fitness score:', fitness_scores[best_individual_index])
# 创建下一代种群
next_population = []
for i in range(population_size):
# 选择两个个体进行交叉
parent1 = random.choices(population, weights=fitness_scores)[0]
parent2 = random.choices(population, weights=fitness_scores)[0]
child = []
for j in range(num_questions):
# 随机选择一个父母的基因
gene = random.choice([parent1[j], parent2[j]])
# 以一定概率进行变异
if random.random() < mutation_rate:
gene = random.choice(question_bank)
child.append(gene)
next_population.append(child)
# 更新种群
population = next_population
# 找到最终适应度最高的个体
fitness_scores = [fitness(individual) for individual in population]
best_individual_index = fitness_scores.index(max(fitness_scores))
best_individual = population[best_individual_index]
print('Final result:', best_individual, '- Fitness score:', fitness_scores[best_individual_index])
```
请注意,此代码仅供参考,实际应用中可能需要根据不同的题目库和组卷需求进行修改和调整。
阅读全文