帮我写一个用c++下用opencv4.6 基于facenet实现的人脸比对项目
时间: 2023-11-27 08:51:04 浏览: 76
好的,这里是一个基于facenet实现的人脸比对项目的示例代码,使用C++和OpenCV4.6库:
首先,需要从GitHub下载Facenet模型文件,并将其放置在项目文件夹中。我使用的是20170512-110547.pb模型,你可以选择其他版本。
然后,我们需要使用OpenCV加载图像并将其转换为适合Facenet模型的格式。在此示例中,我们将使用OpenCV的dnn模块来加载Facenet模型,并使用它来提取人脸特征。我们将在这里使用两个函数:`loadImage()`和`extractFace()`。
```c++
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace dnn;
// Function to load image from file
Mat loadImage(String imagePath) {
Mat image = imread(imagePath, IMREAD_COLOR);
if (image.empty()) {
std::cerr << "Error loading image: " << imagePath << std::endl;
exit(1);
}
return image;
}
// Function to extract face from image and prepare it for Facenet model
Mat extractFace(Mat image, int targetWidth, int targetHeight) {
// Load face detector model
Net faceDetector = readNetFromCaffe("deploy.prototxt", "res10_300x300_ssd_iter_140000_fp16.caffemodel");
// Detect faces in image
Mat blob = blobFromImage(image, 1.0, Size(300, 300), Scalar(104.0, 177.0, 123.0));
faceDetector.setInput(blob);
Mat detection = faceDetector.forward();
if (detection.empty()) {
std::cerr << "No faces detected in image." << std::endl;
exit(1);
}
// Get largest face from detections
int faceIndex = 0;
float maxConfidence = 0.0;
for (int i = 0; i < detection.size[2]; i++) {
float confidence = detection.at<float>(0, 0, i, 2);
if (confidence > maxConfidence) {
faceIndex = i;
maxConfidence = confidence;
}
}
if (maxConfidence < 0.5) {
std::cerr << "No faces detected in image." << std::endl;
exit(1);
}
// Extract face from image
int x1 = static_cast<int>(detection.at<float>(0, 0, faceIndex, 3) * image.cols);
int y1 = static_cast<int>(detection.at<float>(0, 0, faceIndex, 4) * image.rows);
int x2 = static_cast<int>(detection.at<float>(0, 0, faceIndex, 5) * image.cols);
int y2 = static_cast<int>(detection.at<float>(0, 0, faceIndex, 6) * image.rows);
Rect faceRect(x1, y1, x2 - x1, y2 - y1);
Mat faceImage = image(faceRect);
// Resize face image to target size
resize(faceImage, faceImage, Size(targetWidth, targetHeight));
// Convert face image to suitable format for Facenet model
Mat inputBlob = blobFromImage(faceImage, 1.0, Size(targetWidth, targetHeight), Scalar(0, 0, 0), false, false);
return inputBlob;
}
```
现在我们已经准备好将两个人脸图像加载到程序中并提取它们的特征。我们将在这里使用`compareFaces()`函数来比较两个人脸的相似度。
```c++
// Function to compare two faces and return similarity score
float compareFaces(Mat face1, Mat face2, Net facenet) {
// Preprocess faces for Facenet model
Mat inputBlob1 = extractFace(face1, 160, 160);
Mat inputBlob2 = extractFace(face2, 160, 160);
// Get features for faces using Facenet model
facenet.setInput(inputBlob1);
Mat features1 = facenet.forward();
facenet.setInput(inputBlob2);
Mat features2 = facenet.forward();
// Calculate cosine distance between features
float dotProduct = features1.dot(features2);
float norm1 = norm(features1);
float norm2 = norm(features2);
float cosineSimilarity = dotProduct / (norm1 * norm2);
// Return similarity score
return cosineSimilarity;
}
```
最后,我们可以在`main()`函数中使用这些函数来比较两个人脸的相似度:
```c++
int main() {
// Load Facenet model
Net facenet = readNetFromTensorflow("20170512-110547.pb");
// Load face images
Mat face1 = loadImage("face1.jpg");
Mat face2 = loadImage("face2.jpg");
// Compare faces and get similarity score
float similarity = compareFaces(face1, face2, facenet);
// Print similarity score
std::cout << "Similarity score: " << similarity << std::endl;
return 0;
}
```
这就是一个基于Facenet实现的人脸比对项目的完整代码。当你运行它时,它将输出两个人脸的相似度得分。请注意,该示例仅适用于两个人脸的比较。如果你需要比较多个人脸,则需要对其进行修改。
阅读全文