假设一个0/1背包问题是,n=4,重量为w=(4,7,5,3),价值为v=(40,42,25,12),背包限重为W=10,解向量为x=(x1,x2,x3,x4)。请采用课本第6章中的优先队列式分枝限界法求解该问题,C语言
时间: 2023-08-13 21:04:22 浏览: 264
0-1背包问题分支界限法求解-C语言实现
5星 · 资源好评率100%
以下是使用C语言实现优先队列式分枝限界法解决0/1背包问题的示例代码:
```c
#include <stdio.h>
#include <stdlib.h>
#define MAX_N 100 // 最大物品数量
#define MAX_W 1000 // 最大背包容量
struct node {
int level; // 当前搜索层数
int profit; // 当前价值
int weight; // 当前重量
int bound; // 上界
};
struct queue_node {
struct node *data; // 存储结点指针
struct queue_node *next; // 指向下一个结点的指针
};
struct queue {
struct queue_node *front; // 队首指针
struct queue_node *rear; // 队尾指针
};
// 初始化队列
void init_queue(struct queue *q) {
q->front = q->rear = NULL;
}
// 判断队列是否为空
int is_queue_empty(struct queue *q) {
return q->front == NULL;
}
// 入队
void enqueue(struct queue *q, struct node *data) {
struct queue_node *new_node = (struct queue_node *) malloc(sizeof(struct queue_node));
new_node->data = data;
new_node->next = NULL;
if (is_queue_empty(q)) {
q->front = q->rear = new_node;
} else {
q->rear->next = new_node;
q->rear = new_node;
}
}
// 出队
struct node *dequeue(struct queue *q) {
if (is_queue_empty(q)) {
return NULL;
}
struct queue_node *front_node = q->front;
struct node *data = front_node->data;
q->front = front_node->next;
free(front_node);
if (q->front == NULL) {
q->rear = NULL;
}
return data;
}
// 计算结点的上界
int calc_bound(int level, int profit, int weight, int n, int *w, int *v, int W) {
int bound = profit;
int j = level + 1;
int total_weight = weight;
while (j < n && total_weight + w[j] <= W) {
bound += v[j];
total_weight += w[j];
j++;
}
if (j < n) {
bound += (W - total_weight) * v[j] / w[j];
}
return bound;
}
// 初始化根结点
void init_root_node(struct node *root, int n, int *w, int *v, int W) {
root->level = -1;
root->profit = 0;
root->weight = 0;
root->bound = calc_bound(-1, 0, 0, n, w, v, W);
}
// 初始化子结点
void init_child_node(struct node *child, struct node *parent, int i, int n, int *w, int *v, int W) {
child->level = parent->level + 1;
child->profit = parent->profit + v[i];
child->weight = parent->weight + w[i];
child->bound = calc_bound(child->level, child->profit, child->weight, n, w, v, W);
}
// 比较函数,用于优先队列中的结点排序
int compare_node(const void *a, const void *b) {
struct node *node_a = *((struct node **) a);
struct node *node_b = *((struct node **) b);
return node_b->bound - node_a->bound;
}
// 优先队列式分枝限界法求解0/1背包问题
int knapsack(int n, int *w, int *v, int W, int *x) {
struct node root, *p, *left_child, *right_child, *max_node;
int max_profit = 0;
struct queue q;
init_root_node(&root, n, w, v, W);
init_queue(&q);
enqueue(&q, &root);
while (!is_queue_empty(&q)) {
p = dequeue(&q);
if (p->bound > max_profit) {
left_child = (struct node *) malloc(sizeof(struct node));
right_child = (struct node *) malloc(sizeof(struct node));
init_child_node(left_child, p, p->level + 1, n, w, v, W);
init_child_node(right_child, p, p->level + 1, n, w, v, W);
if (left_child->weight <= W && left_child->profit > max_profit) {
max_profit = left_child->profit;
max_node = left_child;
}
if (left_child->bound > max_profit) {
enqueue(&q, left_child);
} else {
free(left_child);
}
if (right_child->weight <= W && right_child->profit > max_profit) {
max_profit = right_child->profit;
max_node = right_child;
}
if (right_child->bound > max_profit) {
enqueue(&q, right_child);
} else {
free(right_child);
}
}
free(p);
}
for (int i = n - 1; i >= 0; i--) {
if (max_node->weight >= w[i]) {
x[i] = 1;
max_node->weight -= w[i];
} else {
x[i] = 0;
}
}
return max_profit;
}
int main() {
int n = 4;
int w[MAX_N] = {4, 7, 5, 3};
int v[MAX_N] = {40, 42, 25, 12};
int W = 10;
int x[MAX_N] = {0};
int max_profit = knapsack(n, w, v, W, x);
printf("最大价值为:%d\n", max_profit);
printf("解向量为:(");
for (int i = 0; i < n; i++) {
printf("%d", x[i]);
if (i < n - 1) {
printf(", ");
}
}
printf(")\n");
return 0;
}
```
该代码实现了优先队列式分枝限界法求解0/1背包问题,并输出了最大价值和解向量。
阅读全文