null_col_df1 = func_df_null_col(df,head=39) null_col_df1
时间: 2024-06-05 08:13:04 浏览: 83
这行代码的意思是调用一个名为 `func_df_null_col` 的函数,该函数的作用是返回一个 DataFrame,其中包含原始 DataFrame `df` 中所有缺失值列(列中至少有一个缺失值)的列名和对应的缺失值数量。 `head=39` 表示只返回前 39 行结果。返回的 DataFrame 赋值给了变量 `null_col_df1`。
相关问题
risk_factor_df.fillna(0,inplace=True) risk_factor_df1 = str(risk_factor_df).strip() risk_factor_df1=risk_factor_df.replace("//","0") risk_factor_df1=risk_factor_df.replace("?","0") corr_matrix = risk_factor_df1.corr() corr_matrix corr_graph = px.imshow(corr_matrix, aspect="auto") corr_graph.show()
这段代码主要是使用 Python 的 Pandas、Plotly 等库对数据进行相关性分析,并绘制相关性热力图。具体的实现过程如下:
1. `risk_factor_df.fillna(0,inplace=True)`:将 DataFrame 中的缺失值用 0 填充。
2. `risk_factor_df1 = str(risk_factor_df).strip()`:将 DataFrame 转换为字符串,并去除字符串两端的空格。
3. `risk_factor_df1=risk_factor_df.replace("//","0")` 和 `risk_factor_df1=risk_factor_df.replace("?","0")`:将字符串中的 "//" 和 "?" 替换成 0,这里可能是为了去除一些异常值,具体需要根据数据情况而定。
4. `corr_matrix = risk_factor_df1.corr()`:使用 Pandas 的 `corr()` 方法计算 DataFrame 中各列之间的相关系数,得到相关系数矩阵。
5. `corr_graph = px.imshow(corr_matrix, aspect="auto")`:使用 Plotly 的 `imshow()` 方法绘制相关性热力图,其中 `aspect="auto"` 表示自适应纵横比。
6. `corr_graph.show()`:将热力图显示出来。
需要注意的是,这段代码中的 `risk_factor_df` 是一个 Pandas DataFrame 对象,而 `corr_matrix` 也是一个 Pandas DataFrame 对象,因此在进行相关性分析和数据处理时需要熟练掌握 Pandas 的相关方法和技巧。
解释这段代码:def generateDf(dataIn,cam,cam1): df0 = getFilteredData(dataIn,cam) df1 = getFilteredData(dataIn,cam1) df1 = df1[['avgVehicleSpeed', 'vehicleFlowRate']] col_rename = {} for col in df1.columns: col_rename[col]='prev_station_' + col df1.rename(columns=col_rename,inplace=True) df = df0.join(df1) df=df[['avgVehicleSpeed', 'vehicleFlowRate','trafficConcentration','dayofweek','hour','prev_station_avgVehicleSpeed', 'prev_station_vehicleFlowRate']].copy() df['isWeekend'] = df['dayofweek'].map(lambda x : 0 if x < 5 else 1)
这段代码定义了一个名为 generateDf 的函数,它有三个参数:dataIn、cam 和 cam1。函数的目的是生成一个数据框(dataframe),该数据框包含了从两个不同相机(cam 和 cam1)获取的过滤数据。函数的主要步骤如下:
1. 使用 getFilteredData 函数从 dataIn 中获取 cam 相机的过滤数据,并赋值给 df0 变量。
2. 使用 getFilteredData 函数从 dataIn 中获取 cam1 相机的过滤数据,并赋值给 df1 变量。
3. 从 df1 中选择 'avgVehicleSpeed' 和 'vehicleFlowRate' 两列,并赋值给 df1 变量。
4. 创建一个空字典 col_rename。
5. 遍历 df1 的每一列,将列名修改为 'prev_station_' + 列名,并将修改后的列名作为字典 col_rename 的键,原先的列名作为值。例如,'avgVehicleSpeed' 修改为 'prev_station_avgVehicleSpeed','vehicleFlowRate' 修改为 'prev_station_vehicleFlowRate'。
6. 使用 rename 函数将 df1 的列名修改为新的列名。
7. 将 df0 和 df1 拼接起来,赋值给 df 变量。
8. 从 df 中选择 'avgVehicleSpeed'、'vehicleFlowRate'、'trafficConcentration'、'dayofweek'、'hour'、'prev_station_avgVehicleSpeed' 和 'prev_station_vehicleFlowRate' 七列,并赋值给 df 变量。
9. 创建一个新的列 'isWeekend',其值为根据 'dayofweek' 列的值计算得到的结果。如果 'dayofweek' 的值小于 5,则 'isWeekend' 的值为 0,否则为 1。最后返回 df 变量。
阅读全文