class SelfAttention(nn.Module): def __init__(self, in_channels, reduction=4): super(SelfAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, n = x.size() y = self.avg_pool(x) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x)这是我使用的自注意力机制模块代码,但是在运行训练程序的时候报错提示: File "/root/autodl-tmp/project/tools/../lib/net/pointnet2_msg.py", line 109, in forward y = self.fc1(y) File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 258, in forward return F.conv1d(input, self.weight, self.bias, self.stride, RuntimeError: Given groups=1, weight of size [256, 1024, 1], expected input[16, 512, 1] to have 1024 channels, but got 512 channels instead,你知道这是为什么吗?我该如何解决,你可以给我提供详细的代码吗?

时间: 2023-07-16 21:16:37 浏览: 58
这个错误提示表明输入张量的通道数不匹配于卷积核的通道数。在你的代码中,第一个卷积层的输入通道数应该与自注意力模块的输入通道数相同,但是你的输入通道数是512,而第一个卷积层的输出通道数是in_channels // reduction,它的值为256,这就导致了通道数量不匹配的错误。 为了解决这个问题,你需要确保第一个卷积层的输出通道数与自注意力模块的输入通道数相同。你可以将in_channels // reduction的值改为512,或者将自注意力模块的输入通道数改为256。 修改后的代码如下: ``` class SelfAttention(nn.Module): def __init__(self, in_channels, reduction=4): super(SelfAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.fc1 = nn.Conv1d(in_channels, 256, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv1d(256, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, n = x.size() y = self.avg_pool(x) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x) ``` 希望可以帮到你!

相关推荐

class TemporalBlock(nn.Module): """ Temporal block with the following layers: - 2x3x3, 1x3x3, spatio-temporal pyramid pooling - dropout - skip connection. """ def __init__(self, in_channels, out_channels=None, use_pyramid_pooling=False, pool_sizes=None): super().__init__() self.in_channels = in_channels self.half_channels = in_channels // 2 self.out_channels = out_channels or self.in_channels self.kernels = [(2, 3, 3), (1, 3, 3)] # Flag for spatio-temporal pyramid pooling self.use_pyramid_pooling = use_pyramid_pooling # 3 convolution paths: 2x3x3, 1x3x3, 1x1x1 self.convolution_paths = [] for kernel_size in self.kernels: self.convolution_paths.append( nn.Sequential( conv_1x1x1_norm_activated(self.in_channels, self.half_channels), CausalConv3d(self.half_channels, self.half_channels, kernel_size=kernel_size), ) ) self.convolution_paths.append(conv_1x1x1_norm_activated(self.in_channels, self.half_channels)) self.convolution_paths = nn.ModuleList(self.convolution_paths) agg_in_channels = len(self.convolution_paths) * self.half_channels if self.use_pyramid_pooling: assert pool_sizes is not None, "setting must contain the list of kernel_size, but is None." reduction_channels = self.in_channels // 3 self.pyramid_pooling = PyramidSpatioTemporalPooling(self.in_channels, reduction_channels, pool_sizes) agg_in_channels += len(pool_sizes) * reduction_channels # Feature aggregation self.aggregation = nn.Sequential( conv_1x1x1_norm_activated(agg_in_channels, self.out_channels),) if self.out_channels != self.in_channels: self.projection = nn.Sequential( nn.Conv3d(self.in_channels, self.out_channels, kernel_size=1, bias=False), nn.BatchNorm3d(self.out_channels), ) else: self.projection = None网络结构是什么?

class DownConv(nn.Module): def __init__(self, seq_len=200, hidden_size=64, m_segments=4,k1=10,channel_reduction=16): super().__init__() """ DownConv is implemented by stacked strided convolution layers and more details can be found below. When the parameters k_1 and k_2 are determined, we can soon get m in Eq.2 of the paper. However, we are more concerned with the size of the parameter m, so we searched for a combination of parameter m and parameter k_1 (parameter k_2 can be easily calculated in this process) to find the optimal segment numbers. Args: input_tensor (torch.Tensor): the input of the attention layer Returns: output_conv (torch.Tensor): the convolutional outputs in Eq.2 of the paper """ self.m =m_segments self.k1 = k1 self.channel_reduction = channel_reduction # avoid over-parameterization middle_segment_length = seq_len/k1 k2=math.ceil(middle_segment_length/m_segments) padding = math.ceil((k2*self.m-middle_segment_length)/2.0) # pad the second convolutional layer appropriately self.conv1a = nn.Conv1d(in_channels=hidden_size, out_channels=hidden_size // self.channel_reduction, kernel_size=self.k1, stride=self.k1) self.relu1a = nn.ReLU(inplace=True) self.conv2a = nn.Conv1d(in_channels=hidden_size // self.channel_reduction, out_channels=hidden_size, kernel_size=k2, stride=k2, padding = padding) def forward(self, input_tensor): input_tensor = input_tensor.permute(0, 2, 1) x1a = self.relu1a(self.conv1a(input_tensor)) x2a = self.conv2a(x1a) if x2a.size(2) != self.m: print('size_erroe, x2a.size_{} do not equals to m_segments_{}'.format(x2a.size(2),self.m)) output_conv = x2a.permute(0, 2, 1) return output_conv

class SelfAttention(nn.Module): def init(self, in_channels, reduction=4): super(SelfAttention, self).init() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, n = x.size() y = self.avg_pool(x) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x) def get_model(input_channels=6, use_xyz=True): return Pointnet2MSG(input_channels=input_channels, use_xyz=use_xyz) class Pointnet2MSG(nn.Module): def init(self, input_channels=6, use_xyz=True): super().init() self.SA_modules = nn.ModuleList() channel_in = input_channels skip_channel_list = [input_channels] for k in range(cfg.RPN.SA_CONFIG.NPOINTS.len()): mlps = cfg.RPN.SA_CONFIG.MLPS[k].copy() channel_out = 0 for idx in range(mlps.len()): mlps[idx] = [channel_in] + mlps[idx] channel_out += mlps[idx][-1] mlps.append(channel_out) self.SA_modules.append( nn.Sequential( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN ), SelfAttention(channel_out) ) ) skip_channel_list.append(channel_out) channel_in = channel_out self.FP_modules = nn.ModuleList() for k in range(cfg.RPN.FP_MLPS.len()): pre_channel = cfg.RPN.FP_MLPS[k + 1][-1] if k + 1 < len(cfg.RPN.FP_MLPS) else channel_out self.FP_modules.append( PointnetFPModule( mlp=[pre_channel + skip_channel_list[k]] + cfg.RPN.FP_MLPS[k] ) )根据如上代码,如果要在Pointnet2MSG类中的forward函数调用SA_modules的话需要传入哪些参数,几个参数?初步的forward函数时这样的 def forward(self, pointcloud: torch.cuda.FloatTensor): xyz, features = self._break_up_pc(pointcloud) l_xyz, l_features = [xyz]然后需要return l_xyz[0], l_features[0]

class PointnetSAModuleMSG(_PointnetSAModuleBase): """Pointnet set abstraction layer with multiscale grouping""" def __init__(self, *, npoint: int, radii: List[float], nsamples: List[int], mlps: List[List[int]], bn: bool = True, use_xyz: bool = True, pool_method='max_pool', instance_norm=False): """ :param npoint: int :param radii: list of float, list of radii to group with :param nsamples: list of int, number of samples in each ball query :param mlps: list of list of int, spec of the pointnet before the global pooling for each scale :param bn: whether to use batchnorm :param use_xyz: :param pool_method: max_pool / avg_pool :param instance_norm: whether to use instance_norm """ super().__init__() assert len(radii) == len(nsamples) == len(mlps) self.npoint = npoint self.groupers = nn.ModuleList() self.mlps = nn.ModuleList() for i in range(len(radii)): radius = radii[i] nsample = nsamples[i] self.groupers.append( pointnet2_utils.QueryAndGroup(radius, nsample, use_xyz=use_xyz) if npoint is not None else pointnet2_utils.GroupAll(use_xyz) ) mlp_spec = mlps[i] if use_xyz: mlp_spec[0] += 3 self.mlps.append(pt_utils.SharedMLP(mlp_spec, bn=bn, instance_norm=instance_norm)) self.pool_method = pool_method这是PointnetSAModuleMSG的代码,而这是selfattention的代码:class SelfAttention(nn.Module): def __init__(self, in_channels, reduction=4): super(SelfAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, n = x.size() y = self.avg_pool(x) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x);我想将SelfAttention作为PointnetSAModuleMSG的子模块,我是为了加入SA注意力机制,所以需要对PointnetSAModuleMSG进行修改。我想在每个SA模块中添加一个注意力机制,以使得网络可以更好地聚焦于重要的点。具体实现方式是在每个SA模块的最后一层MLP后加入一个Self-Attention层,(如SelfAttention类所示)用于计算每个点的注意力分数。你可以给我写出详细的修改代码吗?

import torch import torch.nn as nn from pointnet2_lib.pointnet2.pointnet2_modules import PointnetFPModule, PointnetSAModuleMSG from lib.config import cfg class SelfAttention(nn.Module): def __init__(self, in_channels, reduction=4): super(SelfAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, n = x.size() y = self.avg_pool(x) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x) def get_model(input_channels=6, use_xyz=True): return Pointnet2MSG(input_channels=input_channels, use_xyz=use_xyz) class Pointnet2MSG(nn.Module): def __init__(self, input_channels=6, use_xyz=True): super().__init__() self.SA_modules = nn.ModuleList() channel_in = input_channels skip_channel_list = [input_channels] for k in range(cfg.RPN.SA_CONFIG.NPOINTS.len()): mlps = cfg.RPN.SA_CONFIG.MLPS[k].copy() channel_out = 0 for idx in range(mlps.len()): mlps[idx] = [channel_in] + mlps[idx] channel_out += mlps[idx][-1] mlps.append(channel_out) self.SA_modules.append( nn.Sequential( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN ), SelfAttention(channel_out) ) ) skip_channel_list.append(channel_out) channel_in = channel_out self.FP_modules = nn.ModuleList() for k in range(cfg.RPN.FP_MLPS.len()): pre_channel = cfg.RPN.FP_MLPS[k + 1][-1] if k + 1 < len(cfg.RPN.FP_MLPS) else channel_out self.FP_modules.append( PointnetFPModule( mlp=[pre_channel + skip_channel_list[k]] + cfg.RPN.FP_MLPS[k] ) ) def _break_up_pc(self, pc): xyz = pc[..., 0:3].contiguous() features = ( pc[..., 3:].transpose(1, 2).contiguous() if pc.size(-1) > 3 else None ) return xyz, features def forward(self, pointcloud: torch.cuda.FloatTensor): xyz, features = self._break_up_pc(pointcloud) l_xyz, l_features = [xyz], [features] for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) l_xyz.append(li_xyz) l_features.append(li_features) for i in range(-1, -(len(self.FP_modules) + 1), -1): l_features[i - 1] = self.FP_modules[i]( l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i] ) return l_xyz[0], l_features[0]中的 SA_modules的forward函数接受几个参数,为什么

最新推荐

recommend-type

机器人路径优化:基于强化学习Q-learning算法的移动机器人路径优化MATLAB

机器人路径优化:基于强化学习Q-learning算法的移动机器人路径优化MATLAB
recommend-type

基于Java、Kotlin和C++的多语言支持的WidgetCase自定义控件通用库设计源码

本项目是一款支持Java、Kotlin和C++的多语言自定义控件通用库,包含176个文件,涵盖43个PNG图片、41个Java源文件、40个XML布局文件、21个Kotlin源文件、4个Gradle配置文件及其他相关文件。库提供详尽的API文档,支持持续集成与维护,旨在提供便捷、高效的自定义控件开发体验。
recommend-type

基于树莓派的HarmonyOS系统移植与开发设计源码

本项目为基于树莓派的HarmonyOS系统移植与开发设计源码,包含116个文件,涵盖20个头文件、19个Markdown文档、16个C语言源文件、7个PNG图片文件、7个PDF文件、4个二进制文件、4个ELF文件、4个gn文件、3个HCS文件,以及使用C、Shell和Python等多种编程语言编写。该源码旨在实现HarmonyOS系统在树莓派平台上的移植与应用开发。
recommend-type

毕设项目springboot校友社交系统 答辩用的 PPT

【毕设项目】springboot校友社交系统 答辩用的 PPT
recommend-type

全国大学生电子设计大赛项目合集全国电赛优秀作品STM32项目(ST大赛三等奖作品)超声波自拍神器

全国大学生电子设计大赛项目合集全国电赛优秀作品STM32项目(ST大赛三等奖作品)超声波自拍神器
recommend-type

***+SQL三层架构体育赛事网站毕设源码

资源摘要信息:"***+SQL基于三层模式体育比赛网站设计毕业源码案例设计.zip" 本资源是一个完整的***与SQL Server结合的体育比赛网站设计项目,适用于计算机科学与技术专业的学生作为毕业设计使用。项目采用当前流行且稳定的三层架构模式,即表现层(UI)、业务逻辑层(BLL)和数据访问层(DAL),这种架构模式在软件工程中被广泛应用于系统设计,以实现良好的模块化、代码重用性和业务逻辑与数据访问的分离。 ***技术:***是微软公司开发的一种用于构建动态网页和网络应用程序的服务器端技术,它基于.NET Framework,能够与Visual Studio IDE无缝集成,提供了一个用于创建企业级应用的开发平台。***广泛应用于Web应用程序开发中,尤其适合大型、复杂项目的构建。 2. SQL Server数据库:SQL Server是微软公司推出的关系型数据库管理系统(RDBMS),支持大型数据库系统的存储和管理。它提供了丰富的数据库操作功能,包括数据存储、查询、事务处理和故障恢复等。在本项目中,SQL Server用于存储体育比赛的相关数据,如比赛信息、选手成绩、参赛队伍等。 3. 三层架构模式:三层架构模式是一种经典的软件架构方法,它将应用程序分成三个逻辑部分:用户界面层、业务逻辑层和数据访问层。这种分离使得每个层次具有独立的功能,便于开发、测试和维护。在本项目中,表现层负责向用户提供交互界面,业务逻辑层处理体育比赛的业务规则和逻辑,数据访问层负责与数据库进行通信,执行数据的存取操作。 4. 体育比赛网站:此网站项目专门针对体育比赛领域的需求而设计,可以为用户提供比赛信息查询、成绩更新、队伍管理等功能。网站设计注重用户体验,界面友好,操作简便,使得用户能够快速获取所需信息。 5. 毕业设计源码报告:资源中除了可运行的网站项目源码外,还包含了详尽的项目报告文档。报告文档中通常会详细说明项目设计的背景、目标、需求分析、系统设计、功能模块划分、技术实现细节以及测试用例等关键信息。这些内容对于理解项目的设计思路、实现过程和功能细节至关重要,也是进行毕业设计答辩的重要参考资料。 6. 计算机毕设和管理系统:本资源是针对计算机科学与技术专业的学生设计的,它不仅是一套完整可用的软件系统,也是学生在学习过程中接触到的一个真实案例。通过学习和分析本项目,学生能够更深入地理解软件开发的整个流程,包括需求分析、系统设计、编码实现、测试调试等环节,以及如何将理论知识应用到实际工作中。 7. 编程:该项目的核心是编程工作,涉及到的技术主要包括*** Web Forms(或MVC)用于构建网站界面,C#作为后端开发语言处理逻辑运算,以及SQL语言进行数据库的操作和维护。学习和掌握这些编程技术对于计算机专业的学生来说是基本要求,也是他们未来从事软件开发工作的基础。 资源下载后,用户需要根据项目文档中的指导进行环境配置,包括数据库的搭建、服务器的配置等,然后通过Visual Studio等开发工具加载源码,最后编译和部署网站。一旦配置正确,用户即可通过浏览器访问网站,并体验到系统的所有功能。对于计算机专业学生来说,本资源不仅提供了实践学习的机会,而且还可以作为未来工作中的参考案例。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【Python与XML:终极初学者指南】:从0到1打造高效数据交换

![【Python与XML:终极初学者指南】:从0到1打造高效数据交换](https://www.askpython.com/wp-content/uploads/2020/03/xml_parsing_python-1024x577.png) # 1. Python与XML基础概念 ## 1.1 什么是Python和XML Python是一种广泛使用的高级编程语言,以其简洁明了的语法和强大的功能库支持而闻名。XML(Extensible Markup Language)是一种标记语言,用于存储和传输数据。它允许多样化的信息存储和应用程序间的交换。 ## 1.2 Python与XML的关系
recommend-type

怎么将图像转换成numpy数组

将图像转换为NumPy数组,你可以使用Python的Pillow库,它是处理图像文件非常方便的一个工具。以下是一个简单步骤: 1. 首先安装Pillow库,如果没有安装,可以用pip安装: ```bash pip install pillow ``` 2. 然后,加载图像文件,例如`image.jpg`: ```python from PIL import Image image = Image.open("image.jpg") ``` 3. 使用`numpy.array()`函数将PIL Image对象转换为NumPy数组。默认情况下,如果是
recommend-type

深入探索AzerothCore的WoTLK版本开发

资源摘要信息:"Masuit.MyBlogs"似乎是一个指向同一目录多次的重复字符串,可能是出于某种特殊目的或者是一个错误。由于给出的描述内容和标签都是一样的,我们无法从中获取具体的知识点,只能认为这可能是一个博客项目或者是某个软件项目的名称。 在IT行业中,博客(Blog)是一种在线日记形式的网站,通常用来分享个人或组织的技术见解、最新动态、教程等内容。一个博客项目可能涉及的技术点包括但不限于:网站搭建(如使用WordPress、Hexo、Hugo等平台)、内容管理系统(CMS)的使用、前端技术(HTML、CSS、JavaScript)、后端技术(如PHP、Node.js、Python等语言)、数据库(MySQL、MongoDB等)以及服务器配置(如Apache、Nginx等)。 另一方面,"azerothcore-wotlk-master"在给出的文件名称列表中,这看起来像是一个GitHub仓库的名称。AzerothCore是一个开源的魔兽世界(World of Warcraft,简称WoW)服务器端模拟程序,允许玩家在私有的服务器上体验到类似官方魔兽世界的环境。WoW TBC(The Burning Crusade)和WoW WOTLK(Wrath of the Lich King)是魔兽世界的两个扩展包。因此,"wotlk"很可能指的就是WoW WOTLK扩展包。 AzerothCore相关的知识点包含: 1. 游戏服务器端模拟:理解如何构建和维护一个游戏服务器,使其能够处理玩家的连接、游戏逻辑、数据存储等。 2. C++编程语言:AzerothCore是用C++编写的,这要求开发者具有扎实的C++编程能力。 3. 数据库管理:游戏服务器需要数据库来存储角色数据、世界状态等信息,这涉及数据库设计和优化的技能。 4. 网络编程:游戏服务器必须能够与多个客户端进行实时通信,这需要网络编程知识,包括TCP/IP协议、多线程、网络同步等。 5. Linux操作系统:AzerothCore是一个跨平台的项目,但通常服务器端程序倾向于在Linux环境下运行,因此要求有一定的Linux服务器运维能力。 6. 安全性:游戏服务器要防止作弊和攻击,需要了解相关的安全知识,如何加强系统的安全性。 7. 开源社区:参与开源项目可以培养团队协作和交流能力,了解开源许可证,参与代码提交和版本控制(如Git)的实践。 8. 游戏开发:AzerothCore作为一个游戏服务器,与游戏开发紧密相关。这可能包括游戏设计理论、游戏平衡、游戏世界构建等知识。 综上所述,给定文件的标题和标签可能指向一个博客项目,而文件名称列表中的"azerothcore-wotlk-master"则表明可能涉及到魔兽世界服务器端模拟相关的IT知识点。由于信息量有限,无法提供更详细的技术细节和背景故事。