string 里 substr的速度

时间: 2023-07-23 08:14:35 浏览: 106
string 类型的 substr 函数的速度取决于字符串的长度和所提取的子字符串的长度。通常情况下,substr 函数的时间复杂度为 O(length),其中 length 为所提取的子字符串的长度。因此,当所提取的子字符串长度较小时,substr 函数的速度较快,而当所提取的子字符串长度较大时,substr 函数的速度较慢。同时,substr 函数的速度还受到编译器、CPU 等因素的影响,因此具体的速度还需根据具体情况进行测试。
相关问题

stdstring+qstring

std::string和QString都是字符串类,用于存储和操作字符串。其中,std::string是C++标准库中的字符串类,而QString是Qt框架中的字符串类。 std::string是基于字符数组实现的,可以使用标准库提供的函数进行操作,如substr、find、replace等。它的优点是速度快、易于使用,但是在处理中文字符时需要注意编码问题。 QString则是基于Unicode编码实现的,可以处理各种语言的字符,包括中文、日文、韩文等。它提供了丰富的字符串操作函数,如mid、indexOf、replace等。此外,QString还支持自动内存管理和隐式共享机制,可以提高程序的效率和稳定性。 在使用上,如果你使用Qt框架开发程序,建议使用QString;如果你使用C++标准库开发程序,可以使用std::string。如果需要在两者之间进行转换,可以使用QString::fromStdString和std::string::c_str()等函数。

C++写利用Huffman编码实现文件的压缩与解压缩,要求能够测试压缩率和解压缩速度

好的,我可以帮你回答这个问题。首先,Huffman编码是一种无损数据压缩算法,它可以将一些出现频率较高的字符用较短的编码表示,从而达到压缩数据的目的。下面是一些实现Huffman编码的基本步骤: 1. 统计字符出现频率,生成Huffman树。 2. 根据Huffman树生成编码表。 3. 将编码表写入压缩文件头部。 4. 读取原文件,将每个字符转换为对应的Huffman编码,并写入输出文件。 5. 解压缩时,读取压缩文件头部的编码表,根据编码表将Huffman编码转换为字符。 下面是一个用C++实现Huffman编码压缩和解压缩的示例代码: ```cpp #include <iostream> #include <fstream> #include <queue> #include <unordered_map> #include <vector> #include <bitset> #include <ctime> using namespace std; // Huffman树节点 struct HuffmanNode { char ch; int freq; HuffmanNode *left, *right; HuffmanNode(char ch, int freq) : ch(ch), freq(freq), left(nullptr), right(nullptr) {} }; // 比较函数,用于构建Huffman树 struct Compare { bool operator()(const HuffmanNode* a, const HuffmanNode* b) const { return a->freq > b->freq; } }; // 统计字符出现频率 unordered_map<char, int> getCharFreq(const string& input) { unordered_map<char, int> freq; for (char ch : input) { ++freq[ch]; } return freq; } // 构建Huffman树 HuffmanNode* buildHuffmanTree(const unordered_map<char, int>& freqMap) { priority_queue<HuffmanNode*, vector<HuffmanNode*>, Compare> pq; for (auto& item : freqMap) { pq.push(new HuffmanNode(item.first, item.second)); } while (pq.size() > 1) { HuffmanNode* left = pq.top(); pq.pop(); HuffmanNode* right = pq.top(); pq.pop(); HuffmanNode* parent = new HuffmanNode('\0', left->freq + right->freq); parent->left = left; parent->right = right; pq.push(parent); } return pq.top(); } // 生成编码表 void generateEncodingTable(HuffmanNode* root, unordered_map<char, string>& encodingTable, string code) { if (!root) return; if (root->ch != '\0') { encodingTable[root->ch] = code; } generateEncodingTable(root->left, encodingTable, code + "0"); generateEncodingTable(root->right, encodingTable, code + "1"); } // 编码 string encode(const string& input, const unordered_map<char, string>& encodingTable) { string encoded; for (char ch : input) { encoded += encodingTable.at(ch); } return encoded; } // 解码 string decode(const string& encoded, HuffmanNode* root) { string decoded; HuffmanNode* node = root; for (char bit : encoded) { if (bit == '0') { node = node->left; } else { node = node->right; } if (node->ch != '\0') { decoded += node->ch; node = root; } } return decoded; } // 将编码表写入文件头部 void writeEncodingTable(const unordered_map<char, string>& encodingTable, ofstream& outfile) { for (auto& item : encodingTable) { outfile << item.first << item.second << endl; } } // 从文件头部读取编码表 unordered_map<string, char> readEncodingTable(ifstream& infile) { unordered_map<string, char> encodingTable; string line; while (getline(infile, line)) { char ch = line[0]; string code = line.substr(1); encodingTable[code] = ch; } return encodingTable; } // 压缩文件 void compressFile(const string& inputFilename, const string& outputFilename) { // 读取原文件 ifstream infile(inputFilename, ios::in | ios::binary); if (!infile) { cerr << "Failed to open input file " << inputFilename << endl; return; } string input((istreambuf_iterator<char>(infile)), istreambuf_iterator<char>()); infile.close(); // 统计字符出现频率 unordered_map<char, int> freqMap = getCharFreq(input); // 构建Huffman树 HuffmanNode* root = buildHuffmanTree(freqMap); // 生成编码表 unordered_map<char, string> encodingTable; generateEncodingTable(root, encodingTable, ""); // 将编码表写入文件头部 ofstream outfile(outputFilename, ios::out | ios::binary); if (!outfile) { cerr << "Failed to open output file " << outputFilename << endl; return; } writeEncodingTable(encodingTable, outfile); // 编码并写入输出文件 string encoded = encode(input, encodingTable); int padding = 8 - (encoded.size() % 8); string paddingStr(padding, '0'); outfile << paddingStr << encoded; outfile.close(); } // 解压缩文件 void decompressFile(const string& inputFilename, const string& outputFilename) { // 读取压缩文件头部的编码表 ifstream infile(inputFilename, ios::in | ios::binary); if (!infile) { cerr << "Failed to open input file " << inputFilename << endl; return; } unordered_map<string, char> encodingTable = readEncodingTable(infile); // 读取压缩文件内容 string encoded((istreambuf_iterator<char>(infile)), istreambuf_iterator<char>()); infile.close(); // 解码 int padding = stoi(encoded.substr(0, 8), nullptr, 2); string decoded = decode(encoded.substr(8), buildHuffmanTree(encodingTable), padding); // 写入输出文件 ofstream outfile(outputFilename, ios::out | ios::binary); if (!outfile) { cerr << "Failed to open output file " << outputFilename << endl; return; } outfile << decoded; outfile.close(); } int main() { string inputFilename = "input.txt"; string compressedFilename = "compressed.bin"; string decompressedFilename = "decompressed.txt"; // 压缩文件 clock_t start = clock(); compressFile(inputFilename, compressedFilename); clock_t end = clock(); cout << "Compressed file created." << endl; cout << "Compression time: " << (double)(end - start) / CLOCKS_PER_SEC << " seconds." << endl; // 解压缩文件 start = clock(); decompressFile(compressedFilename, decompressedFilename); end = clock(); cout << "Decompressed file created." << endl; cout << "Decompression time: " << (double)(end - start) / CLOCKS_PER_SEC << " seconds." << endl; // 计算压缩率 ifstream infile(inputFilename, ios::in | ios::binary); long long inputFileSize = infile.seekg(0, ios::end).tellg(); infile.close(); ifstream compressedFile(compressedFilename, ios::in | ios::binary); long long compressedFileSize = compressedFile.seekg(0, ios::end).tellg(); compressedFile.close(); double compressionRatio = (double)compressedFileSize / inputFileSize; cout << "Compression ratio: " << compressionRatio * 100 << "%" << endl; return 0; } ``` 在上面的示例代码中,我们用了一个简单的文本文件作为输入文件,使用了`ifstream`和`ofstream`来读写文件。我们还用了`clock`函数来计算压缩和解压缩文件所需的时间,以及计算压缩率。

相关推荐

在我的长整数形类中,我的/运算符函数为VeryLongInt operator/ (const VeryLongInt& a, const VeryLongInt& b) { // 判断被除数和除数的符号 int sign1 = 1; if (a.sign * b.sign < 0) { sign1 = -1; } // 取绝对值进行计算 string num1 = a.s; string num2 = b.s; if (a.sign == -1) { num1 = num1.erase(0, 1); } if (b.sign == -1) { num2 = num2.erase(0, 1); } VeryLongInt dividend = num1; VeryLongInt divisor = num2; // 特殊情况:除数为0,抛出异常 if (num2 == "0") { throw invalid_argument("division by zero"); } // 如果被除数小于除数,商为0,余数为被除数 if (num2 > num1) { return VeryLongInt(0); } // 计算商和余数 VeryLongInt quotient, remainder; int base = a.base; quotient.base = base; remainder.base = base; quotient.sign = sign1; remainder.sign = a.sign; remainder.s = dividend.s.substr(0, divisor.s.length()); for (int i = divisor.s.length(); i <= dividend.s.length(); i++) { remainder.stripZeros(); // 移除余数的前导0 VeryLongInt temp; while (temp <= remainder) { temp += divisor; quotient += VeryLongInt(1); if (quotient.s.length() > 1 && quotient.s[quotient.s.length() - 2] >= base) { quotient.s[quotient.s.length() - 2] -= base; quotient.s[quotient.s.length() - 1] += 1; } } quotient -= VeryLongInt(1); // 减掉多加的1 remainder = remainder - (temp - divisor); if (i < dividend.s.length()) { remainder.s += dividend.s[i]; } } // 更新商和余数的符号 quotient.sign = sign1 * a.sign; remainder.sign = a.sign; quotient.removeLeadingZeros(); remainder.removeLeadingZeros(); return quotient;}该方法速度太慢,可以给出一个速度较快,结构完善的/运算符函数吗

优化sql:SELECT we.organization_id ,we.wip_entity_id ,case when wl.line_id is null then we.wip_entity_name else '' end wip_entity_name ,we.primary_item_id ,mtt.transaction_type_name ,mmt.transaction_date ,bd.department_code ,mmt.inventory_item_id ,mmt.subinventory_code ,mta.reference_account ,br.resource_code ,lu2.meaning as line_type_name ,mta.base_transaction_value ,mta.cost_element_id ,flv.meaning as cost_element ,wdj.class_code job_type_code ,ml.meaning job_type_name FROM (select * from gerp.mtl_material_transactions where substr(transaction_date,1,7) >= '2023-06' and transaction_source_type_id = 5) mmt inner join gerp.wip_entities we on mmt.organization_id = we.organization_id inner join gerp.mtl_transaction_accounts mta on mta.transaction_source_id = we.wip_entity_id and mta.transaction_id = mmt.transaction_id and mta.transaction_source_type_id = 5 inner join gerp.mtl_transaction_types mtt on mtt.transaction_type_id = mmt.transaction_type_id inner join mfg_lookups lu2 on lu2.lookup_code = mta.accounting_line_type and lu2.lookup_type = 'CST_ACCOUNTING_LINE_TYPE' inner join gerp.mtl_system_items_b msi on msi.inventory_item_id = mmt.inventory_item_id and msi.organization_id = mta.organization_id left join gerp.bom_departments bd on bd.department_id = mmt.department_id left join gerp.bom_resources br on br.resource_id = mta.resource_id left join gerp.wip_lines wl on wl.line_id = mmt.repetitive_line_id left join gerp.wip_discrete_jobs wdj on wdj.wip_entity_id = mta.transaction_source_id left join gerp.fnd_lookup_values_vl flv on cast(mta.cost_element_id as string) = flv.lookup_code and flv.lookup_type = 'CST_COST_CODE_TYPE' left join mfg_lookups ml on ml.lookup_code = wdj.job_type and ml.lookup_type = 'WIP_DISCRETE_JOB' 。其中mmt,we,mta,msi,wdj数据量很大

最新推荐

recommend-type

SQL函数substr使用简介

substr(string, start, length) ``` - `string`:这是必需的参数,表示要进行截取操作的原始字符串。 - `start`:也必需,定义了截取开始的位置。正数表示从字符串的开头算起的位置,负数则表示从字符串的末尾算起...
recommend-type

YOLOv11深度学习目标检测详解及应用示例

内容概要:深入剖析了最新款YOLOv11的目标检测系统,涵盖模型使用的命令集合与配置规则,并提供了一份经过详尽注释的经典应用场景实例代码。本文指导完成YOLOv11环境的配置,并演示了利用该模型执行对象探测的具体流程。 适用人群:针对有一定机器学习背景的研究员和技术开发者。 使用场景及目标:适配不同的开发环境进行物体检测系统的设定与运行,适用于安防监控、智能导航等多领域的物体自动识别。 其他说明:提供了全面的数据准备、训练指南和推论展示样例帮助使用者更好地理解和掌握该技术的实际应用技巧。
recommend-type

河北金融学院在江西2020-2024各专业最低录取分数及位次表.pdf

那些年,与你同分同位次的同学都去了哪里?全国各大学在江西2020-2024年各专业最低录取分数及录取位次数据,高考志愿必备参考数据
recommend-type

LSTM神经网络手写算法.zip

LSTM神经网络手写算法
recommend-type

第十章 核电学课程总结 核电学的应用

核电子学是一门交叉学科,它结合了电子技术与核辐射探测技术,是电子学的一个重要分支。这门学科的发展始于20世纪初,随着核物理学和粒子物理学的发展而逐渐成熟。核电子学的研究对象包括辐射探测器及其相应的电子电路或系统、核信息的电子学测量技术、配有在线电子计算机的核电子系统、电子器件在核辐射下的辐射效应以及核技术应用中的辐射探测技术和电子技术。 核电子学的发展历史可以追溯到1958年,当时在贝尔格莱德召开的第一次国际核电子学会议上,核电子学的名称被正式采用。从那时起,核电子学开始广泛应用于核物理和粒子物理实验,同时也在核医学、空间科学、移动通信和全球定位系统等领域发挥着重要作用。 核电子学的研究内容包括: 1. 辐射探测器及其信号处理技术。 2. 核信息的测量技术,包括时间间隔测量、空间分辨等。 3. 核电子系统的设计与应用,如在线电子计算机系统。 4. 电子器件和系统的抗辐射加固技术。 5. 核技术在不同领域的应用,如工业、农业、医学等。 核电子学的应用非常广泛,例如在医学领域,它可以帮助诊断和治疗疾病;在工业领域,它用于检测材料的完整性和质量;在环境监测中,它用于检测放射性物质。此外
recommend-type

JSP+SSM科研管理系统响应式网站设计案例

资源摘要信息:"JSP基于SSM科研管理系统响应式网站毕业源码案例设计" 1. 技术栈介绍 - JSP(Java Server Pages):一种实现动态网页内容的技术,允许开发者将Java代码嵌入到HTML页面中。 - SSM:指的是Spring、SpringMVC和MyBatis三个框架的整合,是Java Web开发中常见的后端技术组合。 - Spring:一个开源的Java/Java EE全功能栈的应用程序框架和反转控制容器。 - SpringMVC:基于模型-视图-控制器(MVC)设计模式的Web层框架,与Spring框架集成度高。 - MyBatis:一个支持定制化SQL、存储过程以及高级映射的持久层框架。 2. 响应式网站设计 - 响应式设计(Responsive Web Design):一种网页设计方法,旨在使网站能够自动适应多种设备的屏幕尺寸,提供良好的用户体验。常见的做法是通过媒体查询(Media Queries)结合流式布局(Fluid Layout)、弹性图片(Flexible Images)和弹性盒(Flexible Grids)技术来实现。 3. 科研管理系统的功能 - 课题申报:允许用户提交科研项目申请,并包含项目信息、预算、进度跟踪等功能。 - 人员管理:管理系统内的科研人员信息,包括职务、专长、参与项目等。 - 资料共享:提供科研成果、文献资料等的上传、存储和共享功能。 - 财务管理:管理科研项目的经费使用、预算分配、财务报表等。 - 实验室管理:管理实验室资源、预约、仪器设备维护等。 - 成果评估:对科研项目进行定期评估,包括成果展示、评价标准、反馈建议等。 4. 毕业源码案例设计 - 毕业设计通常要求学生能够独立完成一个具有实际应用价值的项目,该项目需要包含从需求分析、系统设计、编码实现到测试维护的完整开发周期。 - 源码案例设计需要具备良好的代码结构、注释以及文档说明,以便于评审老师和同行了解项目的设计思路和实现方法。 5. 压缩包文件结构分析 - "keyan-master"压缩包中应该包含了上述科研管理系统的所有源代码、配置文件、数据库脚本、文档说明等。 - 常见文件夹结构可能包括: - src/main/java:存放Java源代码。 - src/main/resources:存放资源文件,如配置文件、XML映射文件等。 - src/main/webapp:存放Web应用文件,如JSP页面、静态资源(CSS、JavaScript、图片等)。 - src/test/java:存放测试代码。 - 数据库脚本通常用于创建和初始化数据库结构,可能以.sql文件的形式存在。 6. 开发环境建议 - Java Development Kit (JDK):推荐使用Java 8或更高版本。 - 集成开发环境(IDE):如IntelliJ IDEA或Eclipse,这些IDE提供了便捷的开发、调试和代码管理功能。 - 依赖管理工具:如Maven或Gradle,用于管理项目依赖。 - 数据库:如MySQL或PostgreSQL,用于存储和管理科研管理系统的数据。 - Web服务器:如Apache Tomcat,用于部署和运行JSP/SSM应用程序。 7. 系统实现的技术细节 - Spring框架的使用包括了依赖注入、面向切面编程、事务管理等功能。 - SpringMVC处理Web层的请求映射、数据绑定、视图解析等。 - MyBatis负责数据访问层的SQL执行和结果映射。 - JSP用于展示动态生成的内容,结合EL表达式和JSTL标签库进行数据展示和流程控制。 - 响应式布局可能使用了Bootstrap框架,以简化响应式页面的设计和开发过程。 8. 实施安全措施 - 系统应实施基本的安全措施,比如输入验证、密码加密存储、SQL注入防护、跨站请求伪造(CSRF)防护等。 - 可以使用Spring Security框架来提供安全控制和身份验证功能。 9. 部署和测试 - 部署过程应包括将应用打包为WAR文件,部署到Web服务器中。 - 测试包括单元测试、集成测试和系统测试,确保系统按照预期工作,没有重大缺陷。 10. 文档和用户手册 - 开发文档详细说明了系统的设计、架构、数据库设计、接口规范等。 - 用户手册应指导用户如何使用系统,包括功能描述、操作流程、常见问题解答等。 总结:JSP基于SSM科研管理系统响应式网站毕业源码案例设计涉及的技术面广泛,不仅包含Java Web后端开发技术,还包括前端布局设计、数据库管理、安全性考虑以及测试部署等多个方面。对于即将进行毕业设计的学生来说,这样的案例设计既是学习的范例,也是实践的平台。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

mimetypes模块的安全性分析:如何避免文件类型伪造攻击,保护你的应用

![mimetypes模块的安全性分析:如何避免文件类型伪造攻击,保护你的应用](https://s.secrss.com/anquanneican/b917a6a3cf27d78b63c19c18bf1c8152.png) # 1. mimetypes模块概述 在现代软件开发中,文件类型管理是维护应用程序安全性和兼容性的关键环节。Python的`mimetypes`模块便是为此类需求而设计,它允许开发者通过文件名、路径或内容来推断和处理MIME类型。本文将深入剖析`mimetypes`模块,并探讨如何利用它来防范潜在的文件类型伪造攻击。 ## 1.1 Python中的mimetypes模
recommend-type

如何将一个字符转换为一个整型?

在C++中,你可以使用`static_cast`、`atoi`函数或者`stringstream`来将一个字符转换为整型。这里介绍三种方法: 1. **静态类型转换(Static Cast)**: ```cpp char c = '5'; // 假设c是字符'5' int i = static_cast<int>(c); ``` 这种方法直接将字符的ASCII值转换为整数。 2. ** atoi 函数 (std::atoi) **: 如果你有一个只包含数字的字符数组,可以使用`std::atoi`从字符串中读取整数。例如: ```cpp #include <cstdlib> char c
recommend-type

推荐一款超级好用的嵌入式串口调试工具

资源摘要信息:"超级好用的串口调试工具" 在嵌入式开发领域,串口通讯是一种非常基础且广泛使用的技术,它允许计算机与嵌入式设备之间进行数据交换。串口通讯之所以受欢迎,主要是因为其简单易用、成本低廉且兼容性强。为了有效地进行调试和数据监控,一款实用的串口调试工具至关重要。 描述中提到的“超级好用的串口调试工具”,很可能具备如下特点: 1. 用户界面友好:为了使用户可以快速上手,这款工具应具备直观的用户界面设计。功能布局合理,使得用户可以方便地进行串口配置、数据发送和接收、以及数据解析等功能。 2. 高度稳定:在串口通讯中,数据的完整性和通讯的稳定性是至关重要的。该工具应保证在长时间运行下不会出现数据丢失、乱码或其他通讯错误。 3. 强大的数据处理能力:包括数据发送和接收的多种模式(如ASCII码、十六进制等),以及丰富的数据解析功能,帮助开发者更高效地对数据进行分析和处理。 4. 兼容性:为了满足不同嵌入式设备和操作系统的需求,该工具应支持多种操作系统,并能够处理不同波特率、数据位、停止位和校验方式的配置。 5. 功能全面:除了基本的数据传输和解析,还可能包括诸如数据记录、定时通讯、虚拟串口创建等功能,进一步方便用户的使用。 6. 性价比高:鉴于市场上的串口调试工具良莠不齐,该工具不仅好用,而且应该是免费或性价比极高的,这对于成本敏感的项目尤为重要。 【标签】: "软件/插件 串口调试工具" 这个标签清晰地指向了该工具属于软件类别,强调了其作为一款工具软件插件的定位,用于辅助开发者进行串口调试工作。 【压缩包子文件的文件名称列表】: 串口调试助手x64、串口调试助手x32 根据文件名称,我们可以推断出该工具具备不同架构的版本,分别支持64位(x64)和32位(x32)的Windows操作系统。这意味着开发者可以根据他们使用的操作系统版本选择适合的工具版本,从而确保工具的兼容性和性能。同时,提供不同架构的版本,也反映了开发者对用户需求的考虑和对产品的深度优化。