帮我用R写一个COX模型构建的代码,以及写一个基于COX模型的nomogram代码,其中,数据集的名称是df,用来构建COX模型的特征名称是'original:firstorder:RobustMeanAbsoluteDeviation', 'log-sigma-4-0-mm-3D:firstorder:InterquartileRange', 'log-sigma-5-0-mm-3D:glszm:SmallAreaEmphasis', 'wavelet-LLH:firstorder:InterquartileRange', 'wavelet-LLH:firstorder:Uniformity', 'wavelet-HHL:firstorder:Mean', 'wavelet-HHH:firstorder:Mean, 'wavelet-LLL:glcm:Autocorrelation', 'wavelet-LLL:glcm:ClusterProminence','T','E']
时间: 2024-01-21 14:03:06 浏览: 112
制作coco数据集。。。
好的,以下是COX模型构建的代码:
```R
library(survival)
# 基于数据集df构建COX模型
cox_model <- coxph(Surv(T, E) ~ original:firstorder:RobustMeanAbsoluteDeviation +
log-sigma-4-0-mm-3D:firstorder:InterquartileRange +
log-sigma-5-0-mm-3D:glszm:SmallAreaEmphasis +
wavelet-LLH:firstorder:InterquartileRange +
wavelet-LLH:firstorder:Uniformity +
wavelet-HHL:firstorder:Mean +
wavelet-HHH:firstorder:Mean +
wavelet-LLL:glcm:Autocorrelation +
wavelet-LLL:glcm:ClusterProminence, data = df)
# 输出COX模型的摘要信息
summary(cox_model)
```
接下来是基于COX模型的nomogram代码:
```R
library(rms)
# 构建基于COX模型的nomogram
nomogram_model <- nomogram(cox_model, fun = function(x) 1 - plogis(x),
funlabel = "Survival Probability",
predictor = TRUE, lp = FALSE,
xfrac = 0.5, yfrac = 0.5,
cex.axis = 0.8, cex.lab = 0.8,
col.lines = "gray70",
col.points = "gray30",
lwd.lines = 1.5,
lwd.points = 1.5,
font.main = 1, font.sub = 1,
font.axis = 1, font.lab = 1)
# 输出nomogram
print(nomogram_model)
```
希望对你有所帮助!
阅读全文