mean = np.mean(data) std = np.std(data) threshold = 3 * std data = data[abs(data - mean) < threshold]
时间: 2024-06-04 08:12:21 浏览: 122
This code calculates the mean and standard deviation of a dataset (stored in the variable 'data') using the NumPy library. It then sets a threshold value as 3 times the standard deviation. The code next selects only the values in the dataset that are within this threshold range of the mean, effectively removing any outliers. The updated dataset is then stored back into the 'data' variable.
相关问题
使用C++ eigen库翻译以下python代码import pandas as pd import numpy as np import time import random def main(): eigen_list = [] data = [[1,2,4,7,6,3],[3,20,1,2,5,4],[2,0,1,5,8,6],[5,3,3,6,3,2],[6,0,5,2,19,3],[5,2,4,9,6,3]] g_csi_corr = np.cov(data, rowvar=True) #print(g_csi_corr) eigenvalue, featurevector = np.linalg.eigh(g_csi_corr) print("eigenvalue:",eigenvalue) eigen_list.append(max(eigenvalue)) #以下代码验证求解csi阈值 eigen_list.append(1.22) eigen_list.append(-54.21) eigen_list.append(8.44) eigen_list.append(-27.83) eigen_list.append(33.12) #eigen_list.append(40.29) print(eigen_list) eigen_a1 = np.array(eigen_list) num1 = len(eigen_list) eigen_a2 = eigen_a1.reshape((-1, num1)) eigen_a3 = np.std(eigen_a2, axis=0) eigen_a4 = eigen_a3.tolist() k = (0.016 - 0.014) / (max(eigen_a4) - min(eigen_a4)) eigen_a5 = [0.014 + k * (i - min(eigen_a4)) for i in eigen_a4] tri_threshold = np.mean(eigen_a5)
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{
std::vector<double> eigen_list;
MatrixXd data(6, 6);
data << 1, 2, 4, 7, 6, 3,
3, 20, 1, 2, 5, 4,
2, 0, 1, 5, 8, 6,
5, 3, 3, 6, 3, 2,
6, 0, 5, 2, 19, 3,
5, 2, 4, 9, 6, 3;
MatrixXd g_csi_corr = data.transpose() * data / 6.0;
EigenSolver<MatrixXd> es(g_csi_corr);
VectorXd eigenvalue = es.eigenvalues().real();
std::cout << "eigenvalue: " << eigenvalue.transpose() << std::endl;
eigen_list.push_back(eigenvalue.maxCoeff());
eigen_list.push_back(1.22);
eigen_list.push_back(-54.21);
eigen_list.push_back(8.44);
eigen_list.push_back(-27.83);
eigen_list.push_back(33.12);
//eigen_list.push_back(40.29);
std::cout << "eigen_list: ";
for (std::vector<double>::iterator it = eigen_list.begin(); it != eigen_list.end(); ++it)
std::cout << *it << " ";
std::cout << std::endl;
int num1 = eigen_list.size();
MatrixXd eigen_a2 = Map<MatrixXd>(eigen_list.data(), num1, 1);
VectorXd eigen_a3 = eigen_a2.array().rowwise().mean().transpose();
VectorXd eigen_a4 = (eigen_a2 - eigen_a3.replicate(num1, 1)).array().abs().rowwise().mean().transpose();
double k = 0.002 / (eigen_a4.maxCoeff() - eigen_a4.minCoeff());
VectorXd eigen_a5 = 0.014 + k * (eigen_a4.array() - eigen_a4.minCoeff());
double tri_threshold = eigen_a5.mean();
std::cout << "tri_threshold: " << tri_threshold << std::endl;
return 0;
}
def handler(context, event): context.logger.info("Run yolo-v8 model") data = event.body buf = io.BytesIO(base64.b64decode(data["image"])) threshold = float(data.get("threshold", 0.35)) context.user_data.model.conf = threshold image = Image.open(buf) yolo_results = context.user_data.model(image, conf=threshold)[0] labels = yolo_results.names detections = sv.Detections.from_yolov8(yolo_results) detections = detections[detections.confidence > threshold] boxes = detections.xyxy conf = detections.confidence class_ids = detections.class_id results = [] if boxes.shape[0] > 0: for label, score, box in zip(class_ids, conf, boxes): xtl = int(box[0]) ytl = int(box[1]) xbr = int(box[2]) ybr = int(box[3]) results.append({ "confidence": str(score), "label": labels.get(label, "unknown"), "points": [xtl, ytl, xbr, ybr], "type": "rectangle",}) return context.Response(body=json.dumps(results), headers={}, content_type='application/json', status_code=200)改成yolov8分割模型
以下是根据您提供的代码,修改为适应 YOLOv8 分割模型的示例代码:
```python
import io
import json
import base64
from PIL import Image
import torch
import torchvision.transforms as transforms
from torchvision import models
def handler(context, event):
context.logger.info("Run yolo-v8 segmentation model")
data = event.body
buf = io.BytesIO(base64.b64decode(data["image"]))
threshold = float(data.get("threshold", 0.35))
# 加载模型
model = models.segmentation.deeplabv3_resnet50(pretrained=True)
model.eval()
# 图像预处理
transform = transforms.Compose([
transforms.Resize((512, 512)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
image = transform(Image.open(buf)).unsqueeze(0)
# 模型推理
with torch.no_grad():
output = model(image)['out']
output_predictions = torch.argmax(output.squeeze(), dim=0).detach().cpu().numpy()
# 处理分割结果
results = []
for class_id in range(1, output_predictions.max() + 1):
mask = (output_predictions == class_id).astype(int)
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
x, y, w, h = cv2.boundingRect(contour)
results.append({
"label": str(class_id),
"points": [int(x), int(y), int(x + w), int(y + h)],
"type": "rectangle"
})
return context.Response(body=json.dumps(results), headers={},
content_type='application/json', status_code=200)
```
此示例假设您正在使用 PyTorch 和 torchvision 库,并使用了预训练的 DeepLabv3_ResNet50 模型进行分割任务。代码中包括模型加载、图像预处理、模型推理和结果处理的步骤。请注意,具体的修改可能需要根据您使用的模型和环境进行调整。
阅读全文