解释这行代码self.label_emb = nn.Embedding(num_classes, num_classes)

时间: 2023-03-03 19:49:49 浏览: 54
这行代码创建了一个大小为(num_classes, num_classes)的Embedding层,它被赋值给了self.label_emb。其中,num_classes表示类别数量,每个类别用一个向量表示。该层可以将一个大小为num_classes的标签张量映射为一个大小为(num_classes, num_classes)的张量,其中每一行都对应着一个标签向量。
相关问题

在嵌入层使用PGD生成扰动样本,嵌入层代码如下: self.delta_U = tf.Variable( tf.compat.v1.truncated_normal(shape=[self.num_users, self.embedding_size], mean=0.0, stddev=0.01)) self.delta_I = tf.Variable( tf.compat.v1.truncated_normal(shape=[self.num_items, self.embedding_size], mean=0.0, stddev=0.01)) self.delta_Tu = tf.Variable( tf.compat.v1.truncated_normal(shape=[self.num_tags, self.embedding_size], mean=0.0, stddev=0.01))

好的,可以通过修改嵌入层的代码来实现在嵌入层使用PGD生成扰动样本。具体步骤如下: 1.首先定义一个PGD攻击函数,输入为原始数据和标签,输出为扰动后的数据。 ```python import tensorflow as tf def pgd_attack(model, x, y, eps, alpha, iters): """ PGD攻击函数 """ # 生成一个与x相同维度的随机扰动 delta = tf.random.uniform(tf.shape(x), -eps, eps) # 对扰动进行裁剪,保证其在L infinity范数内 delta = tf.clip_by_value(delta, -eps, eps) for i in range(iters): # 带扰动的数据 x_adv = x + delta # 对x_adv进行前向传播,计算损失函数 with tf.GradientTape() as tape: tape.watch(x_adv) y_pred = model(x_adv) loss = tf.keras.losses.sparse_categorical_crossentropy(y, y_pred) # 对损失函数进行反向传播,计算扰动的梯度 grad = tape.gradient(loss, x_adv) # 使用FGSM方法对扰动进行更新 delta = tf.clip_by_value(delta + alpha * tf.sign(grad), -eps, eps) delta = tf.clip_by_value(delta, -eps, eps) x_adv = x + delta return x_adv ``` 2.对嵌入层进行修改,加入PGD攻击的扰动项。 ```python class Model(tf.keras.Model): def __init__(self, num_users, num_items, num_tags, embedding_size): super(Model, self).__init__() self.num_users = num_users self.num_items = num_items self.num_tags = num_tags self.embedding_size = embedding_size # 定义嵌入层 self.embedding_U = tf.keras.layers.Embedding(num_users, embedding_size) self.embedding_I = tf.keras.layers.Embedding(num_items, embedding_size) self.embedding_Tu = tf.keras.layers.Embedding(num_tags, embedding_size) # 定义带扰动的嵌入层 self.delta_U = tf.Variable(tf.compat.v1.truncated_normal(shape=[num_users, embedding_size], mean=0.0, stddev=0.01)) self.delta_I = tf.Variable(tf.compat.v1.truncated_normal(shape=[num_items, embedding_size], mean=0.0, stddev=0.01)) self.delta_Tu = tf.Variable(tf.compat.v1.truncated_normal(shape=[num_tags, embedding_size], mean=0.0, stddev=0.01)) def call(self, inputs): # 解析输入数据 user_id, item_id, tag_id = inputs # 进行嵌入 emb_U = self.embedding_U(user_id) emb_I = self.embedding_I(item_id) emb_Tu = self.embedding_Tu(tag_id) # 加入扰动 emb_U = emb_U + self.delta_U[user_id] emb_I = emb_I + self.delta_I[item_id] emb_Tu = emb_Tu + self.delta_Tu[tag_id] # 拼接嵌入向量 emb = tf.concat([emb_U, emb_I, emb_Tu], axis=1) # 对嵌入向量进行全连接层计算 logits = self.fc(emb) return logits ``` 在上述代码中,我们加入了三个带扰动的嵌入层`self.delta_U`、`self.delta_I`、`self.delta_Tu`,并且在每次前向传播时,将扰动项加到对应的嵌入向量上。 3.对原有的训练代码进行修改,调用PGD攻击函数进行扰动。 ```python # 定义PGD攻击函数的参数 eps = 0.1 alpha = 0.01 iters = 10 # 进行PGD攻击 x_adv = pgd_attack(model, x, y, eps, alpha, iters) # 将扰动后的数据输入模型进行训练 with tf.GradientTape() as tape: y_pred = model(x_adv) loss = tf.keras.losses.sparse_categorical_crossentropy(y, y_pred) grads = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) ``` 在上述代码中,我们首先调用PGD攻击函数`pgd_attack`,生成扰动样本`x_adv`。然后将扰动后的数据输入模型进行训练,计算损失函数并进行反向传播,最后更新模型参数。 这样就完成了在嵌入层使用PGD生成扰动样本的过程。

解释class GraphMLPEncoder(FairseqEncoder): def __init__(self, args): super().__init__(dictionary=None) self.max_nodes = args.max_nodes self.emb_dim = args.encoder_embed_dim self.num_layer = args.encoder_layers self.num_classes = args.num_classes self.atom_encoder = GraphNodeFeature( num_heads=1, num_atoms=512*9, num_in_degree=512, num_out_degree=512, hidden_dim=self.emb_dim, n_layers=self.num_layer, ) self.linear = torch.nn.ModuleList() self.batch_norms = torch.nn.ModuleList() for layer in range(self.num_layer): self.linear.append(torch.nn.Linear(self.emb_dim, self.emb_dim)) self.batch_norms.append(torch.nn.BatchNorm1d(self.emb_dim)) self.graph_pred_linear = torch.nn.Linear(self.emb_dim, self.num_classes)

这段代码定义了一个名为GraphMLPEncoder的类,该类继承自FairseqEncoder类。在初始化方法中,它首先调用父类的初始化方法,并将dictionary参数设为None。然后,它从args参数中获取一些配置信息,如最大节点数(max_nodes)、嵌入维度(emb_dim)、编码器层数(num_layer)和类别数(num_classes)。 接下来,它创建了一个名为atom_encoder的GraphNodeFeature对象,该对象用于对图节点特征进行编码。它具有一些参数,如头数(num_heads)、原子数(num_atoms)、入度数(num_in_degree)、出度数(num_out_degree)、隐藏维度(hidden_dim)和层数(n_layers)。 然后,它创建了两个列表:linear和batch_norms。这些列表用于存储线性层和批归一化层的实例。它通过循环来创建多个线性层和批归一化层,并将它们添加到相应的列表中。 最后,它创建了一个线性层graph_pred_linear,该层将嵌入维度映射到类别数。这个线性层用于图预测任务中的分类操作。

相关推荐

class Decoder(nn.Module): def __init__(self): super(Decoder, self).__init__() self.tgt_emb = nn.Embedding(tgt_vocab_size, d_model) self.pos_emb = PositionalEncoding(d_model) self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)]) def forward(self, dec_inputs, enc_inputs, enc_outputs): ''' dec_inputs: [batch_size, tgt_len] enc_intpus: [batch_size, src_len] enc_outputs: [batsh_size, src_len, d_model] ''' dec_outputs = self.tgt_emb(dec_inputs) # [batch_size, tgt_len, d_model] dec_outputs = self.pos_emb(dec_outputs.transpose(0, 1)).transpose(0, 1).cuda() # [batch_size, tgt_len, d_model] dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs).cuda() # [batch_size, tgt_len, tgt_len] dec_self_attn_subsequence_mask = get_attn_subsequence_mask(dec_inputs).cuda() # [batch_size, tgt_len, tgt_len] dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequence_mask), 0).cuda() # [batch_size, tgt_len, tgt_len] dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs) # [batc_size, tgt_len, src_len] dec_self_attns, dec_enc_attns = [], [] for layer in self.layers: # dec_outputs: [batch_size, tgt_len, d_model], dec_self_attn: [batch_size, n_heads, tgt_len, tgt_len], dec_enc_attn: [batch_size, h_heads, tgt_len, src_len] dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask) dec_self_attns.append(dec_self_attn) dec_enc_attns.append(dec_enc_attn) return dec_outputs, dec_self_attns, dec_enc_attns

最新推荐

recommend-type

node-v12.20.1-sunos-x64.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

基于Springboot+Vue的乡政府管理系统-毕业源码案例设计.zip

网络技术和计算机技术发展至今,已经拥有了深厚的理论基础,并在现实中进行了充分运用,尤其是基于计算机运行的软件更是受到各界的关注。加上现在人们已经步入信息时代,所以对于信息的宣传和管理就很关键。系统化是必要的,设计网上系统不仅会节约人力和管理成本,还会安全保存庞大的数据量,对于信息的维护和检索也不需要花费很多时间,非常的便利。 网上系统是在MySQL中建立数据表保存信息,运用SpringBoot框架和Java语言编写。并按照软件设计开发流程进行设计实现。系统具备友好性且功能完善。 网上系统在让售信息规范化的同时,也能及时通过数据输入的有效性规则检测出错误数据,让数据的录入达到准确性的目的,进而提升数据的可靠性,让系统数据的错误率降至最低。 关键词:vue;MySQL;SpringBoot框架 【引流】 Java、Python、Node.js、Spring Boot、Django、Express、MySQL、PostgreSQL、MongoDB、React、Angular、Vue、Bootstrap、Material-UI、Redis、Docker、Kubernetes
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

ActionContext.getContext().get()代码含义

ActionContext.getContext().get() 是从当前请求的上下文对象中获取指定的属性值的代码。在ActionContext.getContext()方法的返回值上,调用get()方法可以获取当前请求中指定属性的值。 具体来说,ActionContext是Struts2框架中的一个类,它封装了当前请求的上下文信息。在这个上下文对象中,可以存储一些请求相关的属性值,比如请求参数、会话信息、请求头、应用程序上下文等等。调用ActionContext.getContext()方法可以获取当前请求的上下文对象,而调用get()方法可以获取指定属性的值。 例如,可以使用 Acti
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种
recommend-type

设计一个算法,输出在顺序表{3,6,2,10,1,8,5,7,4,9}中采用顺序方法查找关键字5的过程。

好的,我来回答你的问题。 在顺序表中查找关键字5的过程如下: 1. 从顺序表的第一个元素(即3)开始,逐个比较元素的值与目标值5是否相等。 2. 发现第一个元素3不等于目标值5,继续向下查找。 3. 查找到第三个元素2时,发现该元素也不等于目标值5,继续向下查找。 4. 查找到第四个元素10时,发现该元素也不等于目标值5,继续向下查找。 5. 查找到第五个元素1时,发现该元素也不等于目标值5,继续向下查找。 6. 查找到第六个元素8时,发现该元素也不等于目标值5,继续向下查找。 7. 查找到第七个元素5时,发现该元素等于目标值5,查找成功。 因此,顺序表中采用顺序方法查找关键