<4-设计算法实现AOV网的拓扑排序,输出拓扑序列。

时间: 2024-02-27 10:52:46 浏览: 109
拓扑排序是一种对AOV网进行排序的算法,它可以得到一个AOV网的拓扑序列。拓扑序列是一个顶点的线性序列,满足对于任何一条边 u->v,都有u在序列中排在v的前面,即表示所有的依赖关系都得到了满足。以下是拓扑排序的实现算法: 1. 统计每个节点的入度,保存在一个一维数组inDegree中。 2. 将所有入度为0的节点加入队列中。 3. 从队列中取出一个节点,并输出它。 4. 遍历该节点的所有邻居节点,并将它们的入度减1。如果某个邻居节点的入度变为0,则将它加入队列中。 5. 重复步骤3和4直到队列为空。 以下是基于C语言的拓扑排序实现代码: ```c #include <stdio.h> #define MAX_VERTEX_NUM 100 // 最大节点数 // 定义节点类型 typedef struct ArcNode{ int adjvex; // 邻接点 struct ArcNode *nextarc; // 指向下一个邻接点的指针 }ArcNode; typedef struct VertexNode{ char data; // 顶点信息 ArcNode *firstarc; // 指向第一个邻接点的指针 int inDegree; // 入度 }VertexNode; // 定义图类型 typedef struct{ VertexNode vertex[MAX_VERTEX_NUM]; // 存储顶点信息 int vexnum, arcnum; // 顶点数和边数 }Graph; // 创建AOV网 void CreateGraph(Graph *G) { printf("请输入节点数和边数:"); scanf("%d %d", &G->vexnum, &G->arcnum); getchar(); // 去掉回车符 // 初始化节点信息 for(int i = 0; i < G->vexnum; i++) { printf("请输入第%d个节点信息:", i+1); scanf("%c", &G->vertex[i].data); G->vertex[i].firstarc = NULL; G->vertex[i].inDegree = 0; // 入度初值为0 getchar(); // 去掉回车符 } // 添加边 for(int i = 0; i < G->arcnum; i++) { int v1, v2; printf("请输入第%d条边的两个端点:", i+1); scanf("%d %d", &v1, &v2); // 创建邻接点 ArcNode *p = (ArcNode*)malloc(sizeof(ArcNode)); p->adjvex = v2-1; // 注意下标从0开始 p->nextarc = G->vertex[v1-1].firstarc; // 插入到链表头 G->vertex[v1-1].firstarc = p; // 更新链表头指针 G->vertex[v2-1].inDegree++; // 更新入度 } } // 拓扑排序 void TopoSort(Graph *G) { int count = 0; // 统计输出的顶点数 int queue[MAX_VERTEX_NUM], front = 0, rear = -1; // 定义队列 // 遍历所有节点,将入度为0的节点加入队列中 for(int i = 0; i < G->vexnum; i++) { if(G->vertex[i].inDegree == 0) { queue[++rear] = i; } } // 开始拓扑排序,输出每个节点 while(front <= rear) { int v = queue[front++]; // 取出一个节点 printf("%c ", G->vertex[v].data); count++; // 遍历节点v的所有邻接点 ArcNode *p = G->vertex[v].firstarc; while(p != NULL) { int w = p->adjvex; // 将所有邻接点的入度减1,如果减为0则加入队列 if(--G->vertex[w].inDegree == 0) { queue[++rear] = w; } p = p->nextarc; } } if(count < G->vexnum) { // 输出的节点数小于总节点数,说明存在环 printf("AOV网中存在环!"); } } int main() { Graph G; CreateGraph(&G); printf("AOV网的拓扑序列为:"); TopoSort(&G); return 0; } ``` 在主函数中,我们首先调用CreateGraph函数创建AOV网。然后,我们调用TopoSort函数进行拓扑排序,并输出排序结果。在TopoSort函数中,我们使用队列实现拓扑排序算法。首先,我们遍历所有节点,将入度为0的节点加入队列中。然后,从队列中取出一个节点,并输出它。接着,我们遍历该节点的所有邻接点,并将它们的入度减1。如果某个邻接点的入度变为0,则将它加入队列中。重复以上步骤直到队列为空。
阅读全文

相关推荐

最新推荐

recommend-type

C++实现拓扑排序(AOV网络)

总结起来,C++实现拓扑排序的关键在于理解BFS算法,并正确处理邻接矩阵或邻接表中的边关系。通过维护一个栈来跟踪入度为0的顶点,并不断更新邻接顶点的状态,可以有效地进行拓扑排序。同时,注意在构建图结构时要...
recommend-type

拓扑排序的概念以及算法实现

4. 如果所有节点都被添加到有序序列中,那么拓扑排序成功;否则,由于存在环,拓扑排序无法完成。 在AOE(Activity On Edge)网中,除了节点表示活动外,边还代表活动的持续时间,这在关键路径分析中有用。关键路径...
recommend-type

图论(最短路径 图的存储与实现等)

**AOV网与拓扑排序**是用于解决活动排序问题的一种方法,特别是在项目管理中,如排课或运动会秩序册的安排。AOV网是一种无环有向图,用于表示任务间的依赖关系,拓扑排序是对这种网络进行排序的一种方法,使得所有有...
recommend-type

教学计划编制问题论文与源程序

4. 程序设计,包括数据结构(如邻接表)的实现以及拓扑排序算法的编程实现。 5. 实际问题的抽象建模,将教学计划转化为图模型处理。 通过理解和应用这些知识点,可以有效地解决教学计划的编制问题,为教育机构提供...
recommend-type

zip4j.jar包下载,版本为 2.11.5

zip4j.jar包下载,版本为 2.11.5
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"