设向量组a1,a2,a3线性无关,b1=a1+a3,b2=a2+a3,b3=3a1-a2+2a3 讨论b1,b2,b3线性相关性
时间: 2024-01-03 08:03:27 浏览: 330
负温度系数热敏电阻10K3A1W2
我们可以用 b1, b2, b3 的线性组合来表示它们是否线性相关。假设存在标量 k1, k2, k3,使得 k1b1 + k2b2 + k3b3 = 0,那么:
k1(a1 + a3) + k2(a2 + a3) + k3(3a1 - a2 + 2a3) = 0
化简得:
(k1 + 3k3)a1 + (-k2 - k3)a2 + (k1 + k2 + 2k3)a3 = 0
由于 a1, a2, a3 线性无关,所以只有当 k1 + 3k3 = 0, -k2 - k3 = 0, k1 + k2 + 2k3 = 0 时,方程组才有非零解。
解方程组得:
k1 = -k2/2, k3 = k2/6
因此,只要 k2 不等于 0,就可以找到非零解,也就是说,b1, b2, b3 线性相关。反之,如果 k2 等于 0,那么只有 k1 = k3 = 0,b1, b2, b3 才线性无关。
综上所述,b1, b2, b3 线性相关的充分必要条件是 k2 不等于 0。
阅读全文