compute_loss = nn.CrossEntropyLoss()
时间: 2024-02-27 09:37:40 浏览: 134
这段代码是定义了一个计算交叉熵损失的对象,它属于PyTorch中的神经网络模块(nn)。交叉熵损失在分类问题中十分常用,它衡量了模型输出的概率分布与真实标签的概率分布之间的差距,越小表示模型输出越接近真实标签。在训练神经网络时,我们通常会将模型输出与真实标签输入到交叉熵损失函数中进行计算,并最小化该损失以更新模型参数。
相关问题
def train(train_dataset, val_dataset, batch_size, epochs, learning_rate, wt_decay, print_cost=True, isPlot=True): # 加载数据集并分割batch train_loader = data.DataLoader(train_dataset, batch_size) # x = data.DataLoader(train_dataset) # x_train_label, y_train_label = train_test_split(x, test_size = 0.2, stratify=y, shuffle=True) # 构建模型 model = FaceCNN() # 加载模型 # model = torch.load('./model/model.pth') model.to(device) # 损失函数和优化器 compute_loss = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=learning_rate, weight_decay=wt_decay) # 学习率衰减 # scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.8) for epoch in range(epochs): loss = 0 model.train() model = model.to(device) for images, labels in train_loader: optimizer.zero_grad() outputs = model.forward(images.to(device)) loss = compute_loss(outputs, labels.to(device)) loss.backward() optimizer.step() # 打印损失值 if print_cost: print('epoch{}: train_loss:'.format(epoch + 1), loss.item()) # 评估模型准确率 if epoch % 10 == 9: model.eval() acc_train = validate(model, train_dataset, batch_size) acc_val = validate(model, val_dataset, batch_size) print('acc_train: %.1f %%' % (acc_train * 100)) print('acc_val: %.1f %%' % (acc_val * 100)) return model
这段代码实现了一个训练函数 `train()`,用于训练一个人脸表情识别模型。具体步骤如下:
1. 加载数据集并分割 batch:使用 `DataLoader` 将训练数据集 `train_dataset` 加载,并按照指定的 `batch_size` 进行分割,得到一个数据加载器 `train_loader`。
2. 构建模型:创建一个人脸表情识别模型 `FaceCNN` 的实例。
3. 将模型移动到设备:将模型移动到指定的设备上,通常是 GPU 设备。
4. 定义损失函数和优化器:使用交叉熵损失函数和随机梯度下降(SGD)优化器。
5. 进行训练循环:按照指定的 `epochs` 进行训练循环,在每个 epoch 中,遍历训练数据集的每个 batch。
6. 清除梯度:在每个 batch 的训练之前,使用 `optimizer.zero_grad()` 清除模型参数的梯度。
7. 前向传播和计算损失:通过模型的前向传播获取预测结果,并计算预测结果与真实标签之间的交叉熵损失。
8. 反向传播和参数更新:通过调用 `loss.backward()` 进行反向传播,计算参数的梯度,并使用 `optimizer.step()` 更新模型的参数。
9. 打印损失值:如果 `print_cost` 参数为 True,在每个 epoch 完成后打印当前 epoch 的训练损失。
10. 评估模型准确率:如果当前 epoch 的索引是 9 的倍数,即每 10 个 epoch,使用验证集 `val_dataset` 对模型进行评估,并打印训练集和验证集的准确率。
11. 返回训练好的模型。
通过这些步骤,代码实现了对人脸表情识别模型进行训练的过程,包括模型的构建、损失函数的定义、优化器的设置、训练循环的执行和模型参数的更新。
class_weights=compute_class_weight('balanced',classes=np.unique(pee_label_train+np_label_train), y=pee_label_train+np_label_train) class_weights=torch.tensor(class_weights, dtype=torch.float) loss_function=torch.nn.CrossEntropyLoss(class_weights.to(device) 这段代码书写是否正确
这段代码的书写有一些问题,应该将最后一行的括号补全:
```
class_weights = compute_class_weight('balanced', classes=np.unique(pee_label_train+np_label_train), y=pee_label_train+np_label_train)
class_weights = torch.tensor(class_weights, dtype=torch.float)
loss_function = torch.nn.CrossEntropyLoss(class_weights.to(device))
```
这里的修改是增加了`loss_function`最后一行中的右括号,将其补全。这是因为`CrossEntropyLoss`函数是需要传入参数的,而括号不完整会导致代码报错。
阅读全文