src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2)这段代码什么意思

时间: 2024-03-29 07:34:19 浏览: 28
这段代码的作用是生成一个源序列掩码,用于在Transformer模型中进行自注意力机制的计算。具体来说,它会首先检查源序列 `src` 中哪些位置是被填充符号(一般为0)所填充的,将这些位置的值设为0,其他位置的值设为1,得到一个与 `src` 相同形状的二元张量。然后,它会通过 `unsqueeze` 方法在第1个和第2个维度上各增加一个维度,使得掩码张量的形状变成 `(batch_size, 1, 1, src_len)`,其中 `batch_size` 是输入数据的批大小,`src_len` 是源序列的长度。这样生成的掩码张量可以直接与注意力矩阵相乘,实现对填充位置的屏蔽,只让真实的输入参与注意力计算。
相关问题

flatten transformer代码

flatten transformer是一种用于自然语言处理任务的模型架构,它基于transformer模型,并在其基础上进行了改进。下面是flatten transformer的代码介绍: 首先,我们需要导入所需的库和模块: ``` import torch import torch.nn as nn import torch.nn.functional as F ``` 接下来,定义flatten transformer的主要模块,包括Encoder、Decoder和Transformer模块。 1. Encoder模块: ``` class Encoder(nn.Module): def __init__(self, input_dim, hid_dim, n_layers, n_heads, pf_dim, dropout): super().__init__() self.tok_embedding = nn.Embedding(input_dim, hid_dim) self.pos_embedding = nn.Embedding(max_len, hid_dim) self.layers = nn.ModuleList([EncoderLayer(hid_dim, n_heads, pf_dim, dropout) for _ in range(n_layers)]) self.dropout = nn.Dropout(dropout) def forward(self, src, src_mask): batch_size = src.shape src_len = src.shape pos = torch.arange(0, src_len).unsqueeze(0).repeat(batch_size, 1).to(device) src = self.dropout((self.tok_embedding(src) * math.sqrt(self.hid_dim)) + self.pos_embedding(pos)) for layer in self.layers: src = layer(src, src_mask) return src ``` 2. Decoder模块: ``` class Decoder(nn.Module): def __init__(self, output_dim, hid_dim, n_layers, n_heads, pf_dim, dropout): super().__init__() self.tok_embedding = nn.Embedding(output_dim, hid_dim) self.pos_embedding = nn.Embedding(max_len, hid_dim) self.layers = nn.ModuleList([DecoderLayer(hid_dim, n_heads, pf_dim, dropout) for _ in range(n_layers)]) self.fc_out = nn.Linear(hid_dim, output_dim) self.dropout = nn.Dropout(dropout) def forward(self, trg, enc_src, trg_mask, src_mask): batch_size = trg.shape trg_len = trg.shape pos = torch.arange(0, trg_len).unsqueeze(0).repeat(batch_size, 1).to(device) trg = self.dropout((self.tok_embedding(trg) * math.sqrt(self.hid_dim)) + self.pos_embedding(pos)) for layer in self.layers: trg, attention = layer(trg, enc_src, trg_mask, src_mask) output = self.fc_out(trg) return output, attention ``` 3. Transformer模块: ``` class Transformer(nn.Module): def __init__(self, encoder, decoder, src_pad_idx, trg_pad_idx): super().__init__() self.encoder = encoder self.decoder = decoder self.src_pad_idx = src_pad_idx self.trg_pad_idx = trg_pad_idx def make_src_mask(self, src): src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2) return src_mask def make_trg_mask(self, trg): trg_pad_mask = (trg != self.trg_pad_idx).unsqueeze(1).unsqueeze(3) trg_len = trg.shape trg_sub_mask = torch.tril(torch.ones((trg_len, trg_len), device=device)).bool() trg_mask = trg_pad_mask & trg_sub_mask return trg_mask def forward(self, src, trg): src_mask = self.make_src_mask(src) trg_mask = self.make_trg_mask(trg) enc_src = self.encoder(src, src_mask) output, attention = self.decoder(trg, enc_src, trg_mask, src_mask) return output, attention ``` 以上是flatten transformer的主要代码介绍,其中包括Encoder、Decoder和Transformer模块的定义和前向传播过程。这些模块通过嵌套调用实现了flatten transformer的功能。

transformer原始代码生成

Transformer是一种用于自然语言处理任务的深度学习模型,它在机器翻译、文本生成等任务中取得了很好的效果。下面是Transformer模型的原始代码生成的步骤: 1. 导入所需的库和模块: ```python import torch import torch.nn as nn import torch.nn.functional as F ``` 2. 定义Transformer模型的主要组件,包括Encoder、Decoder和整个Transformer模型: ```python class Encoder(nn.Module): def __init__(self, input_dim, hid_dim, n_layers, n_heads, pf_dim, dropout): super().__init__() self.input_dim = input_dim self.hid_dim = hid_dim self.n_layers = n_layers self.n_heads = n_heads self.pf_dim = pf_dim self.dropout = dropout self.tok_embedding = nn.Embedding(input_dim, hid_dim) self.pos_embedding = nn.Embedding(1000, hid_dim) self.layers = nn.ModuleList([EncoderLayer(hid_dim, n_heads, pf_dim, dropout) for _ in range(n_layers)]) self.dropout = nn.Dropout(dropout) def forward(self, src, src_mask): batch_size = src.shape[0] src_len = src.shape[1] pos = torch.arange(0, src_len).unsqueeze(0).repeat(batch_size, 1).to(src.device) src = self.dropout((self.tok_embedding(src) * math.sqrt(self.hid_dim)) + self.pos_embedding(pos)) for layer in self.layers: src = layer(src, src_mask) return src class Decoder(nn.Module): def __init__(self, output_dim, hid_dim, n_layers, n_heads, pf_dim, dropout): super().__init__() self.output_dim = output_dim self.hid_dim = hid_dim self.n_layers = n_layers self.n_heads = n_heads self.pf_dim = pf_dim self.dropout = dropout self.tok_embedding = nn.Embedding(output_dim, hid_dim) self.pos_embedding = nn.Embedding(1000, hid_dim) self.layers = nn.ModuleList([DecoderLayer(hid_dim, n_heads, pf_dim, dropout) for _ in range(n_layers)]) self.fc_out = nn.Linear(hid_dim, output_dim) self.dropout = nn.Dropout(dropout) def forward(self, trg, enc_src, trg_mask, src_mask): batch_size = trg.shape[0] trg_len = trg.shape[1] pos = torch.arange(0, trg_len).unsqueeze(0).repeat(batch_size, 1).to(trg.device) trg = self.dropout((self.tok_embedding(trg) * math.sqrt(self.hid_dim)) + self.pos_embedding(pos)) for layer in self.layers: trg, attention = layer(trg, enc_src, trg_mask, src_mask) output = self.fc_out(trg) return output, attention class Transformer(nn.Module): def __init__(self, encoder, decoder, src_pad_idx, trg_pad_idx): super().__init__() self.encoder = encoder self.decoder = decoder self.src_pad_idx = src_pad_idx self.trg_pad_idx = trg_pad_idx def make_src_mask(self, src): src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2) return src_mask def make_trg_mask(self, trg): trg_pad_mask = (trg != self.trg_pad_idx).unsqueeze(1).unsqueeze(3) trg_len = trg.shape[1] trg_sub_mask = torch.tril(torch.ones((trg_len, trg_len))).bool() trg_mask = trg_pad_mask & trg_sub_mask return trg_mask def forward(self, src, trg): src_mask = self.make_src_mask(src) trg_mask = self.make_trg_mask(trg) enc_src = self.encoder(src, src_mask) output, attention = self.decoder(trg, enc_src, trg_mask, src_mask) return output, attention ``` 3. 定义Transformer模型的子组件,包括EncoderLayer和DecoderLayer: ```python class EncoderLayer(nn.Module): def __init__(self, hid_dim, n_heads, pf_dim, dropout): super().__init__() self.self_attn_layer_norm = nn.LayerNorm(hid_dim) self.ff_layer_norm = nn.LayerNorm(hid_dim) self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout) self.positionwise_feedforward = PositionwiseFeedforwardLayer(hid_dim, pf_dim, dropout) self.dropout = nn.Dropout(dropout) def forward(self, src, src_mask): _src, _ = self.self_attention(src, src, src, src_mask) src = self.self_attn_layer_norm(src + self.dropout(_src)) _src = self.positionwise_feedforward(src) src = self.ff_layer_norm(src + self.dropout(_src)) return src class DecoderLayer(nn.Module): def __init__(self, hid_dim, n_heads, pf_dim, dropout): super().__init__() self.self_attn_layer_norm = nn.LayerNorm(hid_dim) self.enc_attn_layer_norm = nn.LayerNorm(hid_dim) self.ff_layer_norm = nn.LayerNorm(hid_dim) self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout) self.encoder_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout) self.positionwise_feedforward = PositionwiseFeedforwardLayer(hid_dim, pf_dim, dropout) self.dropout = nn.Dropout(dropout) def forward(self, trg, enc_src, trg_mask, src_mask): _trg, _ = self.self_attention(trg, trg, trg, trg_mask) trg = self.self_attn_layer_norm(trg + self.dropout(_trg)) _trg, attention = self.encoder_attention(trg, enc_src, enc_src, src_mask) trg = self.enc_attn_layer_norm(trg + self.dropout(_trg)) _trg = self.positionwise_feedforward(trg) trg = self.ff_layer_norm(trg + self.dropout(_trg)) return trg, attention ``` 4. 定义Transformer模型的其他辅助组件,包括MultiHeadAttentionLayer和PositionwiseFeedforwardLayer: ```python class MultiHeadAttentionLayer(nn.Module): def __init__(self, hid_dim, n_heads, dropout): super().__init__() self.hid_dim = hid_dim self.n_heads = n_heads self.head_dim = hid_dim // n_heads self.fc_q = nn.Linear(hid_dim, hid_dim) self.fc_k = nn.Linear(hid_dim, hid_dim) self.fc_v = nn.Linear(hid_dim, hid_dim) self.fc_o = nn.Linear(hid_dim, hid_dim) self.dropout = nn.Dropout(dropout) def forward(self, query, key, value, mask=None): batch_size = query.shape[0] Q = self.fc_q(query) K = self.fc_k(key) V = self.fc_v(value) Q = Q.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3) K = K.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3) V = V.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3) energy = torch.matmul(Q, K.permute(0, 1, 3, 2)) / math.sqrt(self.head_dim) if mask is not None: energy = energy.masked_fill(mask == 0, -1e10) attention = torch.softmax(energy, dim=-1) x = torch.matmul(self.dropout(attention), V) x = x.permute(0, 2, 1, 3).contiguous() x = x.view(batch_size, -1, self.hid_dim) x = self.fc_o(x) return x, attention class PositionwiseFeedforwardLayer(nn.Module): def __init__(self, hid_dim, pf_dim, dropout): super().__init__() self.fc_1 = nn.Linear(hid_dim, pf_dim) self.fc_2 = nn.Linear(pf_dim, hid_dim) self.dropout = nn.Dropout(dropout) def forward(self, x): x = self.dropout(torch.relu(self.fc_1(x))) x = self.fc_2(x) return x ``` 这些代码片段展示了Transformer模型的主要组件和辅助组件的实现。你可以根据需要进行修改和扩展。注意,这只是一个简化的示例,实际的Transformer模型可能还包括其他组件和功能。

相关推荐

最新推荐

recommend-type

卫星网络容器仿真平台+TC流量控制+SRS&ffmpeg推流.zip

卫星网络容器仿真平台+TC流量控制+SRS&ffmpeg推流
recommend-type

基于AI框架的智能工厂设计思路.pptx

基于AI框架的智能工厂设计思路.pptx
recommend-type

基于微信小程序的健身房私教预约系统(免费提供全套java开源毕业设计源码+数据库+开题报告+论文+ppt+使用说明)

自2014年底以来,体育产业政策红利接踵而至。在政府鼓励下,一系列体育产业政策出现,加之资本的投入使得优质的内容和商品大幅度的产生,以及居民健康意识的加强和参与大众体育的热情,使得体育产业进入了黄金发展期。大众健身作为体育产业的一部分,正如火如茶的发展。谈及健身领域,最重要的两个因素就是健身场地和教练管理,在互联网时代下,专业的健身商品也成为企业发展重要的桎梏。2016年6月3日国务院印发的《全面健身计划(2016-2020年)》中提到:“不断扩大的健身人群、支持市场涌现适合亚洲人的健身课程、专业教练管理培养机构、专业健身教练管理以及体验良好的健身场所。 健身房私教预约的设计主要是对系统所要实现的功能进行详细考虑,确定所要实现的功能后进行界面的设计,在这中间还要考虑如何可以更好的将功能及页面进行很好的结合,方便用户可以很容易明了的找到自己所需要的信息,还有系统平台后期的可操作性,通过对信息内容的详细了解进行技术的开发。 健身房私教预约的开发利用现有的成熟技术参考,以源代码为模板,分析功能调整与健身房私教预约的实际需求相结合,讨论了基于健身房私教预约的使用。  关键词:健身房私教预约小程
recommend-type

基于微信小程序的高校寻物平台(免费提供全套java开源毕业设计源码+数据库+开题报告+论文+ppt+使用说明)

随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实施在技术上已逐步成熟。本文介绍了基于微信小程序的高校寻物平台的开发全过程。通过分析基于微信小程序的高校寻物平台管理的不足,创建了一个计算机管理基于微信小程序的高校寻物平台的方案。文章介绍了基于微信小程序的高校寻物平台的系统分析部分,包括可行性分析等,系统设计部分主要介绍了系统功能设计和数据库设计。 本基于微信小程序的高校寻物平台有管理员,用户以及失主三个角色。管理员功能有个人中心,用户管理,失主管理,寻物启示管理,拾物归还管理,失物招领管理,失物认领管理,公告信息管理,举报投诉管理,系统管理等。用户功能有个人中心,寻物启示管理,拾物归还管理,失物招领管理,失物认领管理等。失主功能有个人中心,寻物启示管理,拾物归还管理,失物招领管理,失物认领管理,举报投诉管理等。因而具有一定的实用性。 本站后台采用Java的SSM框架进行后台管理开发,可以在浏览器上登录进行后台数据方面的管理,MySQL作为本地数据库,微信小程序用到了微信开发者工具,充分保证系统的稳定性。系统具有界面清晰、操作简单,功能齐全的特点,使得基于微信小程序的高校寻物平
recommend-type

基于Python的电影数据可视化分析系统源码+文档说明(期末大作业)

基于Python的电影数据可视化分析系统源码+文档说明(高分期末大作业)本系统主要分为四个部分,分别为后端爬虫抓取、数据处理分析可视化、GUI界面展示、启动运行,分别对应getData.py、pyec.py、GUI.py、main.py四个文件。 并且包含data文件夹用于存储系统所需或产生的数据文件。 本资源中的源码都是经过本地编译过可运行的,评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 本资源中的源码都是经过本地编译过可运行的,评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 本资源中的源码都是经过本地编译过可运行的,评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 本资源中的源码都是经过本地编译过可运行的,评审分达到95分以上。资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。