super(channel_selection, self).__init__() self.indexes = nn.Parameter(torch.ones(num_channels))

时间: 2024-05-23 21:15:53 浏览: 133
DOC

apache_http.conf详解

这两行代码是一个类的构造函数,用于初始化类的属性。第一行代码调用了父类的构造函数并传递了 `channel_selection` 参数,以便父类可以正确地初始化。第二行代码创建了一个名为 `indexes` 的可训练参数(`nn.Parameter`),它是一个大小为 `num_channels` 的张量,每个元素都被初始化为 1。这个参数在模型训练时会被动态更新,用于选择输入数据中的哪些通道参与计算。
阅读全文

相关推荐

def forward(self, data, org_edge_index): x = data.clone().detach() edge_index_sets = self.edge_index_sets device = data.device batch_num, node_num, all_feature = x.shape x = x.view(-1, all_feature).contiguous() gcn_outs = [] for i, edge_index in enumerate(edge_index_sets): edge_num = edge_index.shape[1] cache_edge_index = self.cache_edge_index_sets[i] if cache_edge_index is None or cache_edge_index.shape[1] != edge_num*batch_num: self.cache_edge_index_sets[i] = get_batch_edge_index(edge_index, batch_num, node_num).to(device) batch_edge_index = self.cache_edge_index_sets[i] all_embeddings = self.embedding(torch.arange(node_num).to(device)) weights_arr = all_embeddings.detach().clone() all_embeddings = all_embeddings.repeat(batch_num, 1) weights = weights_arr.view(node_num, -1) cos_ji_mat = torch.matmul(weights, weights.T) normed_mat = torch.matmul(weights.norm(dim=-1).view(-1,1), weights.norm(dim=-1).view(1,-1)) cos_ji_mat = cos_ji_mat / normed_mat dim = weights.shape[-1] topk_num = self.topk topk_indices_ji = torch.topk(cos_ji_mat, topk_num, dim=-1)[1] self.learned_graph = topk_indices_ji gated_i = torch.arange(0, node_num).T.unsqueeze(1).repeat(1, topk_num).flatten().to(device).unsqueeze(0) gated_j = topk_indices_ji.flatten().unsqueeze(0) gated_edge_index = torch.cat((gated_j, gated_i), dim=0) batch_gated_edge_index = get_batch_edge_index(gated_edge_index, batch_num, node_num).to(device) gcn_out = self.gnn_layers[i](x, batch_gated_edge_index, node_num=node_num*batch_num, embedding=all_embeddings) gcn_outs.append(gcn_out) x = torch.cat(gcn_outs, dim=1) x = x.view(batch_num, node_num, -1) indexes = torch.arange(0,node_num).to(device) out = torch.mul(x, self.embedding(indexes)) out = out.permute(0,2,1) out = F.relu(self.bn_outlayer_in(out)) out = out.permute(0,2,1) out = self.dp(out) out = self.out_layer(out) out = out.view(-1, node_num) return out

class AbstractGreedyAndPrune(): def __init__(self, aoi: AoI, uavs_tours: dict, max_rounds: int, debug: bool = True): self.aoi = aoi self.max_rounds = max_rounds self.debug = debug self.graph = aoi.graph self.nnodes = self.aoi.n_targets self.uavs = list(uavs_tours.keys()) self.nuavs = len(self.uavs) self.uavs_tours = {i: uavs_tours[self.uavs[i]] for i in range(self.nuavs)} self.__check_depots() self.reachable_points = self.__reachable_points() def __pruning(self, mr_solution: MultiRoundSolution) -> MultiRoundSolution: return utility.pruning_multiroundsolution(mr_solution) def solution(self) -> MultiRoundSolution: mrs_builder = MultiRoundSolutionBuilder(self.aoi) for uav in self.uavs: mrs_builder.add_drone(uav) residual_ntours_to_assign = {i : self.max_rounds for i in range(self.nuavs)} tour_to_assign = self.max_rounds * self.nuavs visited_points = set() while not self.greedy_stop_condition(visited_points, tour_to_assign): itd_uav, ind_tour = self.local_optimal_choice(visited_points, residual_ntours_to_assign) residual_ntours_to_assign[itd_uav] -= 1 tour_to_assign -= 1 opt_tour = self.uavs_tours[itd_uav][ind_tour] visited_points |= set(opt_tour.targets_indexes) # update visited points mrs_builder.append_tour(self.uavs[itd_uav], opt_tour) return self.__pruning(mrs_builder.build()) class CumulativeGreedyCoverage(AbstractGreedyAndPrune): choice_dict = {} for ind_uav in range(self.nuavs): uav_residual_rounds = residual_ntours_to_assign[ind_uav] if uav_residual_rounds > 0: uav_tours = self.uavs_tours[ind_uav] for ind_tour in range(len(uav_tours)): tour = uav_tours[ind_tour] quality_tour = self.evaluate_tour(tour, uav_residual_rounds, visited_points) choice_dict[quality_tour] = (ind_uav, ind_tour) best_value = max(choice_dict, key=int) return choice_dict[best_value] def evaluate_tour(self, tour : Tour, round_count : int, visited_points : set): new_points = (set(tour.targets_indexes) - visited_points) return round_count * len(new_points) 如何改写上述程序,使其能返回所有已经探索过的目标点visited_points的数量,请用代码表示

class SVDRecommender: def __init__(self, k=50, ncv=None, tol=0, which='LM', v0=None, maxiter=None, return_singular_vectors=True, solver='arpack'): self.k = k self.ncv = ncv self.tol = tol self.which = which self.v0 = v0 self.maxiter = maxiter self.return_singular_vectors = return_singular_vectors self.solver = solver def svds(self, A): if self.which == 'LM': largest = True elif self.which == 'SM': largest = False else: raise ValueError("which must be either 'LM' or 'SM'.") if not (isinstance(A, LinearOperator) or isspmatrix(A) or is_pydata_spmatrix(A)): A = np.asarray(A) n, m = A.shape if self.k <= 0 or self.k >= min(n, m): raise ValueError("k must be between 1 and min(A.shape), k=%d" % self.k) if isinstance(A, LinearOperator): if n > m: X_dot = A.matvec X_matmat = A.matmat XH_dot = A.rmatvec XH_mat = A.rmatmat else: X_dot = A.rmatvec X_matmat = A.rmatmat XH_dot = A.matvec XH_mat = A.matmat dtype = getattr(A, 'dtype', None) if dtype is None: dtype = A.dot(np.zeros([m, 1])).dtype else: if n > m: X_dot = X_matmat = A.dot XH_dot = XH_mat = _herm(A).dot else: XH_dot = XH_mat = A.dot X_dot = X_matmat = _herm(A).dot def matvec_XH_X(x): return XH_dot(X_dot(x)) def matmat_XH_X(x): return XH_mat(X_matmat(x)) XH_X = LinearOperator(matvec=matvec_XH_X, dtype=A.dtype, matmat=matmat_XH_X, shape=(min(A.shape), min(A.shape))) #获得隐式定义的格拉米矩阵的低秩近似。 eigvals, eigvec = eigsh(XH_X, k=self.k, tol=self.tol ** 2, maxiter=self.maxiter, ncv=self.ncv, which=self.which, v0=self.v0) #格拉米矩阵有实非负特征值。 eigvals = np.maximum(eigvals.real, 0) #使用来自pinvh的小特征值的复数检测。 t = eigvec.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps cutoff = cond * np.max(eigvals) #获得一个指示哪些本征对不是简并微小的掩码, #并为阈值奇异值创建一个重新排序数组。 above_cutoff = (eigvals > cutoff) nlarge = above_cutoff.sum() nsmall = self.k - nlarge slarge = np.sqrt(eigvals[above_cutoff]) s = np.zeros_like(eigvals) s[:nlarge] = slarge if not self.return_singular_vectors: return np.sort(s) if n > m: vlarge = eigvec[:, above_cutoff] ularge = X_matmat(vlarge) / slarge if self.return_singular_vectors != 'vh' else None vhlarge = _herm(vlarge) else: ularge = eigvec[:, above_cutoff] vhlarge = _herm(X_matmat(ularge) / slarge) if self.return_singular_vectors != 'u' else None u = _augmented_orthonormal_cols(ularge, nsmall) if ularge is not None else None vh = _augmented_orthonormal_rows(vhlarge, nsmall) if vhlarge is not None else None indexes_sorted = np.argsort(s) s = s[indexes_sorted] if u is not None: u = u[:, indexes_sorted] if vh is not None: vh = vh[indexes_sorted] return u, s, vh def _augmented_orthonormal_cols(U, n): if U.shape[0] <= n: return U Q, R = np.linalg.qr(U) return Q[:, :n] def _augmented_orthonormal_rows(V, n): if V.shape[1] <= n: return V Q, R = np.linalg.qr(V.T) return Q[:, :n].T def _herm(x): return np.conjugate(x.T) 将上述代码修改为使用LM,迭代器使用arpack

from scipy.sparse.linalg import eigsh, LinearOperator from scipy.sparse import isspmatrix, is_pydata_spmatrix class SVDRecommender: def init(self, k=50, ncv=None, tol=0, which='LM', v0=None, maxiter=None, return_singular_vectors=True, solver='arpack'): self.k = k self.ncv = ncv self.tol = tol self.which = which self.v0 = v0 self.maxiter = maxiter self.return_singular_vectors = return_singular_vectors self.solver = solver def svds(self, A): largest = self.which == 'LM' if not largest and self.which != 'SM': raise ValueError("which must be either 'LM' or 'SM'.") if not (isinstance(A, LinearOperator) or isspmatrix(A) or is_pydata_spmatrix(A)): A = np.asarray(A) n, m = A.shape if self.k <= 0 or self.k >= min(n, m): raise ValueError("k must be between 1 and min(A.shape), k=%d" % self.k) if isinstance(A, LinearOperator): if n > m: X_dot = A.matvec X_matmat = A.matmat XH_dot = A.rmatvec XH_mat = A.rmatmat else: X_dot = A.rmatvec X_matmat = A.rmatmat XH_dot = A.matvec XH_mat = A.matmat dtype = getattr(A, 'dtype', None) if dtype is None: dtype = A.dot(np.zeros([m, 1])).dtype else: if n > m: X_dot = X_matmat = A.dot XH_dot = XH_mat = _herm(A).dot else: XH_dot = XH_mat = A.dot X_dot = X_matmat = _herm(A).dot def matvec_XH_X(x): return XH_dot(X_dot(x)) def matmat_XH_X(x): return XH_mat(X_matmat(x)) XH_X = LinearOperator(matvec=matvec_XH_X, dtype=A.dtype, matmat=matmat_XH_X, shape=(min(A.shape), min(A.shape))) eigvals, eigvec = eigsh(XH_X, k=self.k, tol=self.tol ** 2, maxiter=self.maxiter, ncv=self.ncv, which=self.which, v0=self.v0) eigvals = np.maximum(eigvals.real, 0) t = eigvec.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps cutoff = cond * np.max(eigvals) above_cutoff = (eigvals > cutoff) nlarge = above_cutoff.sum() nsmall = self.k - nlarge slarge = np.sqrt(eigvals[above_cutoff]) s = np.zeros_like(eigvals) s[:nlarge] = slarge if not self.return_singular_vectors: return np.sort(s) if n > m: vlarge = eigvec[:, above_cutoff] ularge = X_matmat(vlarge) / slarge if self.return_singular_vectors != 'vh' else None vhlarge = _herm(vlarge) else: ularge = eigvec[:, above_cutoff] vhlarge = _herm(X_matmat(ularge) / slarge) if self.return_singular_vectors != 'u' else None u = _augmented_orthonormal_cols(ularge, nsmall) if ularge is not None else None vh = _augmented_orthonormal_rows(vhlarge, nsmall) if vhlarge is not None else None indexes_sorted = np.argsort(s) s = s[indexes_sorted] if u is not None: u = u[:, indexes_sorted] if vh is not None: vh = vh[indexes_sorted] return u, s, vh def _augmented_orthonormal_cols(U, n): if U.shape[0] <= n: return U Q, R = np.linalg.qr(U) return Q[:, :n] def _augmented_orthonormal_rows(V, n): if V.shape[1] <= n: return V Q, R = np.linalg.qr(V.T) return Q[:, :n].T def _herm(x): return np.conjugate(x.T)这段代码中使用的scipy包太旧了,导致会出现报错信息为:cannot import name 'is_pydata_spmatrix' from 'scipy.sparse' (D:\Anaconda\lib\site-packages\scipy\sparse_init.py),将这段代码修改为使用最新版的scipy包

class SVDRecommender: def init(self, k=50, ncv=None, tol=0, which='LM', v0=None, maxiter=None, return_singular_vectors=True, solver='arpack'): self.k = k self.ncv = ncv self.tol = tol self.which = which self.v0 = v0 self.maxiter = maxiter self.return_singular_vectors = return_singular_vectors self.solver = solver def svds(self, A): if which == 'LM': largest = True elif which == 'SM': largest = False else: raise ValueError("which must be either 'LM' or 'SM'.") if not (isinstance(A, LinearOperator) or isspmatrix(A) or is_pydata_spmatrix(A)): A = np.asarray(A) n, m = A.shape if k <= 0 or k >= min(n, m): raise ValueError("k must be between 1 and min(A.shape), k=%d" % k) if isinstance(A, LinearOperator): if n > m: X_dot = A.matvec X_matmat = A.matmat XH_dot = A.rmatvec XH_mat = A.rmatmat else: X_dot = A.rmatvec X_matmat = A.rmatmat XH_dot = A.matvec XH_mat = A.matmat dtype = getattr(A, 'dtype', None) if dtype is None: dtype = A.dot(np.zeros([m, 1])).dtype else: if n > m: X_dot = X_matmat = A.dot XH_dot = XH_mat = _herm(A).dot else: XH_dot = XH_mat = A.dot X_dot = X_matmat = _herm(A).dot def matvec_XH_X(x): return XH_dot(X_dot(x)) def matmat_XH_X(x): return XH_mat(X_matmat(x)) XH_X = LinearOperator(matvec=matvec_XH_X, dtype=A.dtype, matmat=matmat_XH_X, shape=(min(A.shape), min(A.shape))) # Get a low rank approximation of the implicitly defined gramian matrix. eigvals, eigvec = eigsh(XH_X, k=k, tol=tol ** 2, maxiter=maxiter, ncv=ncv, which=which, v0=v0) # Gramian matrix has real non-negative eigenvalues. eigvals = np.maximum(eigvals.real, 0) # Use complex detection of small eigenvalues from pinvh. t = eigvec.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps cutoff = cond * np.max(eigvals) # Get a mask indicating which eigenpairs are not degenerate tiny, # and create a reordering array for thresholded singular values. above_cutoff = (eigvals > cutoff) nlarge = above_cutoff.sum() nsmall = k - nlarge slarge = np.sqrt(eigvals[above_cutoff]) s = np.zeros_like(eigvals) s[:nlarge] = slarge if not return_singular_vectors: return np.sort(s) if n > m: vlarge = eigvec[:, above_cutoff] ularge = X_matmat(vlarge) / slarge if return_singular_vectors != 'vh' else None vhlarge = _herm(vlarge) else: ularge = eigvec[:, above_cutoff] vhlarge = _herm(X_matmat(ularge) / slarge) if return_singular_vectors != 'u' else None u = _augmented_orthonormal_cols(ularge, nsmall) if ularge is not None else None vh = _augmented_orthonormal_rows(vhlarge, nsmall) if vhlarge is not None else None indexes_sorted = np.argsort(s) s = s[indexes_sorted] if u is not None: u = u[:, indexes_sorted] if vh is not None: vh = vh[indexes_sorted] return u, s, vh将这段代码放入一个.py文件中,用Spyder查看,有报错,可能是缩进有问题,无法被调用,根据这个问题,给出解决办法,给出改正后的完整代码

bs_data = w_data[w_data['波束场景No'] == cross_data['波束场景No'][0]] 报错:Traceback (most recent call last): File "C:\Users\z84259074\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\indexes\base.py", line 3652, in get_loc return self._engine.get_loc(casted_key) File "pandas\_libs\index.pyx", line 147, in pandas._libs.index.IndexEngine.get_loc File "pandas\_libs\index.pyx", line 176, in pandas._libs.index.IndexEngine.get_loc File "pandas\_libs\hashtable_class_helper.pxi", line 7080, in pandas._libs.hashtable.PyObjectHashTable.get_item File "pandas\_libs\hashtable_class_helper.pxi", line 7088, in pandas._libs.hashtable.PyObjectHashTable.get_item KeyError: '波束场景No' The above exception was the direct cause of the following exception: Traceback (most recent call last): File "D:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 127, in <module> data = optimizing() File "D:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 18, in __init__ self.optimizing_main() File "D:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 120, in optimizing_main self.child2=self.mutation_cdata(fitness_data,self.cross_data) File "D:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 86, in mutation_cdata bs_data = w_data[w_data['波束场景No'] == cross_data['波束场景No'][0]] File "C:\Users\z84259074\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\frame.py", line 3761, in __getitem__ indexer = self.columns.get_loc(key) File "C:\Users\z84259074\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\indexes\base.py", line 3654, in get_loc raise KeyError(key) from err KeyError: '波束场景No'

(random.randint(0, bs_data[12]-1))*3+bs_data[8] 报错:Traceback (most recent call last): File "C:\Users\z84259074\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\indexes\base.py", line 3652, in get_loc return self._engine.get_loc(casted_key) File "pandas\_libs\index.pyx", line 147, in pandas._libs.index.IndexEngine.get_loc File "pandas\_libs\index.pyx", line 176, in pandas._libs.index.IndexEngine.get_loc File "pandas\_libs\hashtable_class_helper.pxi", line 7080, in pandas._libs.hashtable.PyObjectHashTable.get_item File "pandas\_libs\hashtable_class_helper.pxi", line 7088, in pandas._libs.hashtable.PyObjectHashTable.get_item KeyError: 12 The above exception was the direct cause of the following exception: Traceback (most recent call last): File "d:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 128, in <module> data = optimizing() File "d:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 15, in __init__ self.optimizing_main() File "d:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 124, in optimizing_main self.child2=self.mutation_cdata(fitness_data,self.cross_data) File "d:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 92, in mutation_cdata print('cross_data[波束场景No]',bs_data[12]) File "C:\Users\z84259074\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\frame.py", line 3761, in __getitem__ indexer = self.columns.get_loc(key) File "C:\Users\z84259074\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\indexes\base.py", line 3654, in get_loc raise KeyError(key) from err KeyError: 12

Traceback (most recent call last): File "D:\Anaconda\lib\site-packages\pandas\core\indexes\base.py", line 3802, in get_loc return self._engine.get_loc(casted_key) File "pandas\_libs\index.pyx", line 138, in pandas._libs.index.IndexEngine.get_loc File "pandas\_libs\index.pyx", line 165, in pandas._libs.index.IndexEngine.get_loc File "pandas\_libs\hashtable_class_helper.pxi", line 5745, in pandas._libs.hashtable.PyObjectHashTable.get_item File "pandas\_libs\hashtable_class_helper.pxi", line 5753, in pandas._libs.hashtable.PyObjectHashTable.get_item KeyError: 'A' The above exception was the direct cause of the following exception: Traceback (most recent call last): File "e:\Mydata\py\提取指定范围excel数据.py", line 7, in <module> data = df.loc[0:9, 'A':'B'] # 例如提取第1行到第10行,第1列到第3列的数据 File "D:\Anaconda\lib\site-packages\pandas\core\indexing.py", line 1067, in __getitem__ return self._getitem_tuple(key) File "D:\Anaconda\lib\site-packages\pandas\core\indexing.py", line 1256, in _getitem_tuple return self._getitem_tuple_same_dim(tup) File "D:\Anaconda\lib\site-packages\pandas\core\indexing.py", line 924, in _getitem_tuple_same_dim retval = getattr(retval, self.name)._getitem_axis(key, axis=i) File "D:\Anaconda\lib\site-packages\pandas\core\indexing.py", line 1290, in _getitem_axis return self._get_slice_axis(key, axis=axis) File "D:\Anaconda\lib\site-packages\pandas\core\indexing.py", line 1324, in _get_slice_axis indexer = labels.slice_indexer(slice_obj.start, slice_obj.stop, slice_obj.step) File "D:\Anaconda\lib\site-packages\pandas\core\indexes\base.py", line 6559, in slice_indexer start_slice, end_slice = self.slice_locs(start, end, step=step) File "D:\Anaconda\lib\site-packages\pandas\core\indexes\base.py", line 6767, in slice_locs start_slice = self.get_slice_bound(start, "left") File "D:\Anaconda\lib\site-packages\pandas\core\indexes\base.py", line 6686, in get_slice_bound raise err File "D:\Anaconda\lib\site-packages\pandas\core\indexes\base.py", line 6680, in get_slice_bound slc = self.get_loc(label) File "D:\Anaconda\lib\site-packages\pandas\core\indexes\base.py", line 3804, in get_loc raise KeyError(key) from err KeyError: 'A'

最新推荐

recommend-type

[Oracle] dbms_metadata.get_ddl 的使用方法总结

如果需要获取一个模式下所有对象的DDL,可以编写脚本来遍历`DBA_TABLES`、`DBA_VIEWS`、`DBA_INDEXES`、`DBA_OBJECTS`等数据字典视图。例如,获取所有表的DDL: ```sql SET PAGESIZE 0 SET LONG 90000 SET FEEDBACK...
recommend-type

(完整)大学计算机基础期末练习题(含答案).pdf

(完整)大学计算机基础期末练习题(含答案).pdf
recommend-type

Twinkle Tray:轻松一招,多屏亮度管理

资源摘要信息:"Twinkle Tray 让您轻松管理多台显示器的亮度级别" 在当今的数字化工作环境中,拥有多台显示器已经成为许多用户的常态。这为用户提供了更为宽敞的视野和更高的工作空间灵活性。然而,管理多台显示器的亮度设置一直是一个挑战,因为操作系统的原生功能往往不足以满足用户的需求。Windows 10作为目前广泛使用的操作系统之一,虽然提供了调整大多数显示器背光的功能,但却存在诸多限制,尤其是对于连接的外部显示器来说,Windows 10通常不支持调整其亮度。这就是“Twinkle Tray”应用程序出现的背景。 “Twinkle Tray”是一款旨在简化多显示器亮度管理的应用程序。通过在系统托盘中添加一个图标,用户可以方便地访问并调整所有兼容显示器的亮度级别。这个应用程序的特点可以归纳为: 1. 系统托盘集成:Twinkle Tray 在系统托盘中添加了一个亮度滑块,这一设计模仿了Windows 10内置的音量控制面板,使其直观且易于使用。 2. 背光标准化:应用程序可以对不同显示器的背光进行标准化,确保在进行屏幕间切换时视觉体验保持一致。 3. 自动亮度调节:根据一天中的时间自动改变显示器的亮度,有助于减少眼睛疲劳并提升能效。 4. 与Windows 10无缝融合:Twinkle Tray与Windows 10深度集成,可以使用用户的个性化设置来匹配任务栏,保持用户界面的一致性。 5. 随Windows启动:Twinkle Tray设置为与Windows 10一同启动,确保用户在开机后能够立即使用该软件调整显示器亮度。 技术实现方面,“Twinkle Tray”应用程序是利用现代网络技术与系统API相结合的方式构建的。具体使用了以下技术组件: - Electron:一个使用JavaScript、HTML和CSS等网页技术来创建跨平台的桌面应用程序的框架。 - Node.js:一个基于Chrome V8引擎的JavaScript运行环境,允许开发者使用JavaScript编写服务器端应用程序。 - node-ddcci:一个Node.js模块,用于实现DDC/CI(Display Data Channel Command Interface)协议,该协议用于计算机与显示器之间的通信。 - wmi-client:一个Node.js模块,允许访问Windows Management Instrumentation (WMI),这是Windows系统中用于管理系统信息和控制的一种技术。 - win32-displayconfig:一个Windows平台的库,提供了直接控制显示器配置的接口。 用户可以通过twinkletray.com网站或者发布页面下载“Twinkle Tray”的最新版本。下载完成后,用户将运行一个安装程序EXE,安装完成后,系统托盘会显示Twinkle Tray图标。用户单击该图标后会显示“调整亮度”面板,通过该面板可以进行亮度设置;单击面板以外的地方可以隐藏它。右键单击系统托盘图标还会提供更多选项和设置,使用户能够精细调整应用程序的行为。 标签“Miscellaneous”(杂项)表明,该应用程序虽然专门针对显示器亮度管理,但也可以视为多功能工具箱中的一部分,因为它通过提供与系统紧密集成的便利工具来增强用户的多显示器使用体验。 总之,对于那些需要在多显示器设置中保持高效和舒适体验的用户来说,“Twinkle Tray”应用程序提供了一种便捷的解决方案,可以有效地解决Windows 10在多显示器亮度管理方面存在的不足。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【STS8200系统集成指南】:将STS8200无缝融入任何现有系统

![【STS8200系统集成指南】:将STS8200无缝融入任何现有系统](https://5.imimg.com/data5/SELLER/Default/2020/10/IJ/TE/RX/5414966/siemens-sitop-power-supply-psu8200-3-phase-1000x1000.jpg) 参考资源链接:[STS8200编程手册v3.21:ATE开发必备](https://wenku.csdn.net/doc/6401ab9acce7214c316e8d7d?spm=1055.2635.3001.10343) # 1. STS8200系统集成概述 在信息技术
recommend-type

在自动化装配线上,如何根据不同的应用场景选择合适的机器视觉对位引导技术以实现高精度定位?请结合Cognex、Halcon、OpenCV以及机器人运动控制进行说明。

在面对自动化装配线的高精度定位需求时,选择合适的机器视觉对位引导技术至关重要。首先,我们需要根据装配线的具体应用环境和目标精度要求来选择技术方案。例如,在只需要单个工件定位的应用场景中,可以考虑使用Cognex视觉系统,它提供了强大的图像处理能力和丰富的视觉工具库,适合快速开发和部署。对于更复杂的多工件或动态环境,Halcon的高级算法能够提供更精确的视觉分析,特别是在处理复杂光照条件和不规则形状物体时表现出色。 参考资源链接:[机器视觉对位引导技术详解](https://wenku.csdn.net/doc/7don5ccveb?spm=1055.2569.3001.10343) Ope
recommend-type

WHOIS-Python-Bot:自动抓取WHOIS信息的Python脚本

资源摘要信息:"WHOIS-Python-Bot:https" 知识点概述: 根据提供的文件信息,我们可以推断出以下知识点: 1. WHOIS协议与域名信息检索 2. Python编程语言在网络请求与自动化中的应用 3. 文件和目录管理在Python项目中的实践 4. HTTP协议与网络请求的基本概念 5. 使用Python创建项目目录的步骤与方法 详细知识点: 1. WHOIS协议与域名信息检索: WHOIS是一个互联网标准协议,用于查询数据库以获取域名、IP地址或自治系统的所有者等信息。WHOIS服务允许用户查询域名的注册数据,这些数据包括注册人、注册机构、联系信息、注册日期、到期日期和状态等。WHOIS-Python-Bot可能指的是一个使用Python编程语言编写的自动化脚本或机器人,旨在通过WHOIS协议查询域名相关信息。 2. Python编程语言在网络请求与自动化中的应用: Python作为一种高级编程语言,因其简洁的语法、强大的库支持和广泛的应用场景,非常适合用于网络编程和自动化任务。在处理WHOIS查询时,Python可以利用其标准库如urllib或第三方库如requests来发送网络请求,并解析返回的数据。Python还提供了一些用于自动化和网络操作的工具,比如BeautifulSoup用于解析HTML和XML文档,以及Scrapy用于网络爬虫开发。 3. 文件和目录管理在Python项目中的实践: 文件和目录管理是任何编程项目中的常见任务。在Python项目中,开发者经常需要创建和管理文件和目录,以便组织源代码、配置文件、日志和其他资源。Python提供了一套内建的文件处理函数,比如os模块,允许开发者执行创建目录、删除目录、重命名文件等操作。这对于项目结构的初始化和动态构建非常有用。 4. HTTP协议与网络请求的基本概念: HTTP(超文本传输协议)是互联网上应用最广泛的一种网络协议,是用于从万维网服务器传输超文本到本地浏览器的传输协议。了解HTTP协议的基本概念对于开发网络相关的应用至关重要。例如,HTTP请求和响应的基本结构,包括请求方法(GET、POST、PUT、DELETE等)、状态码、请求头、请求体和响应体。Python通过各种库简化了HTTP请求的发送和处理。 5. 使用Python创建项目目录的步骤与方法: 在Python中创建项目目录是一个简单的过程,通常涉及到使用内置的os模块或pathlib模块。os模块提供了一系列文件操作的函数,比如os.mkdir()用于创建目录。pathlib模块引入了面向对象的文件系统路径操作。使用这些工具,开发者可以轻松地在代码中创建项目所需的目录结构。例如,创建一个名为“文件”的目录,可以使用os.mkdir("文件"),如果目录不存在的话。更好的做法是先检查目录是否已存在,使用os.path.exists()函数,然后再决定是否创建目录。 项目目录创建示例代码: ```python import os # 指定要创建的目录名称 dir_name = "文件" # 检查目录是否存在,如果不存在则创建 if not os.path.exists(dir_name): os.mkdir(dir_name) print(f"目录 '{dir_name}' 创建成功.") else: print(f"目录 '{dir_name}' 已存在.") ``` 通过上述知识点,我们可以对WHOIS-Python-Bot项目及其可能的功能、结构和实现技术有一个大致的了解。项目名称暗示了该项目是一个利用Python编写的网络自动化脚本,可能用于批量查询域名注册信息,并通过HTTP协议将查询结果发送到服务器。此外,项目初始化阶段需要创建特定的目录来存储相关文件和数据。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【STS8200跨平台编程攻略】:一次编写,全球运行的终极指南

![【STS8200跨平台编程攻略】:一次编写,全球运行的终极指南](https://media.geeksforgeeks.org/wp-content/uploads/20210706120537/JavaStream.png) 参考资源链接:[STS8200编程手册v3.21:ATE开发必备](https://wenku.csdn.net/doc/6401ab9acce7214c316e8d7d?spm=1055.2635.3001.10343) # 1. STS8200跨平台编程概述 跨平台编程一直是软件开发领域中的热门话题,它允许开发者使用单一的代码库创建能够在多个操作系统上运行
recommend-type

如何利用Matlab与FPGA协同实现一个50Hz的正弦波信号源,并进行时域仿真与频域分析?

在设计50Hz正弦波信号源的过程中,Matlab与FPGA的结合使用能够提供强大的开发和测试平台。以下是实现这一目标的详细步骤: 参考资源链接:[Matlab与FPGA协同:实现50Hz正弦波信号源与仿真](https://wenku.csdn.net/doc/284nbajy2m?spm=1055.2569.3001.10343) 首先,在Matlab环境中,我们需要编写代码来生成所需的正弦波信号。根据正弦波的时域表达式s(t) = sin(2πf_m * t + θ),可以设置参数f_m为50Hz,θ为π/2,峰值电压为1V。采样率fs设置为5kHz,确保一个周期内包含100个采样点,