降低这段代码的重复率:def run(demand_file,depot_file,epochs,pc,pm,popsize,n_select,opt_type): model=Model() model.pc=pc model.pm=pm model.popsize=popsize model.n_select=n_select model.opt_type=opt_type readCSVFile(demand_file,depot_file,model) calDistanceMatrix(model) generateInitialSol(model) history_best_obj = [] best_sol=Sol() best_sol.obj=float('inf') model.best_sol=best_sol start_time=time.time() for ep in range(epochs): ''' 计算适应度''' calFitness(model) ''' 选择''' selectSol(model) ''' 交叉''' crossSol(model) ''' 变异''' muSol(model) ''' 记录最优目标''' history_best_obj.append(model.best_sol.obj) print("迭代次数: %s, 最优目标值: %s, 运行时间: %s" % (ep+1,model.best_sol.obj,time.time()-start_time)) plotObj(history_best_obj) plotRoutes(model) outPut(model)
时间: 2024-02-07 09:02:39 浏览: 119
depot_tools工具包
可以将一些重复的代码抽象成函数或方法,例如:
1. 将读取CSV文件和计算距离矩阵的代码封装成一个方法;
2. 将选择、交叉和变异的代码封装成三个方法。
重构后的代码如下:
```
def run(demand_file,depot_file,epochs,pc,pm,popsize,n_select,opt_type):
model=Model()
model.pc=pc
model.pm=pm
model.popsize=popsize
model.n_select=n_select
model.opt_type=opt_type
# 读取CSV文件和计算距离矩阵
initialize(model, demand_file, depot_file)
history_best_obj = []
best_sol=Sol()
best_sol.obj=float('inf')
model.best_sol=best_sol
start_time=time.time()
for ep in range(epochs):
# 计算适应度
calFitness(model)
# 选择
selectSol(model)
# 交叉
crossSol(model)
# 变异
muSol(model)
# 记录最优目标
history_best_obj.append(model.best_sol.obj)
print("迭代次数: %s, 最优目标值: %s, 运行时间: %s" % (ep+1,model.best_sol.obj,time.time()-start_time))
plotObj(history_best_obj)
plotRoutes(model)
outPut(model)
def initialize(model, demand_file, depot_file):
readCSVFile(demand_file, depot_file, model)
calDistanceMatrix(model)
def selectSol(model):
...
def crossSol(model):
...
def muSol(model):
...
```
阅读全文