initializer = tf.contrib.layers.xavier_initializer_conv2d() AttributeError: module 'tensorflow' has no attribute 'contrib'
时间: 2023-09-21 16:02:43 浏览: 138
This error occurs because the `tf.contrib` module is deprecated in TensorFlow 2.0 and later versions.
To fix this error, you can replace `tf.contrib.layers.xavier_initializer_conv2d()` with `tf.keras.initializers.GlorotUniform()` or `tf.keras.initializers.GlorotNormal()`, which provide similar functionality.
For example, you can replace the line of code that causes the error with the following:
```
initializer = tf.keras.initializers.GlorotUniform()
```
相关问题
k_initializer = tf.contrib.layers.xavier_initializer()
This code initializes a variable called "k_initializer" using the Xavier initialization method, which is a popular method for initializing weights in deep neural networks. Xavier initialization aims to set the initial weights in a way that ensures the gradients flow smoothly through the network during training. This can help prevent issues such as vanishing or exploding gradients, which can make it difficult to train a deep neural network effectively. The variable "k_initializer" can be used to initialize the weights of a neural network layer.
解释代码all_weights['dec_w1'] = tf.get_variable("dec1_w1", shape=[self.kernel_size[1], self.kernel_size[1], self.n_hidden[0], self.n_hidden[1]], initializer=layers.xavier_initializer_conv2d()) all_weights['dec_b1'] = tf.Variable(tf.zeros([self.n_hidden[0]], dtype=tf.float32)) all_weights['dec_w2'] = tf.get_variable("dec1_w2", shape=[self.kernel_size[0], self.kernel_size[0], 1, self.n_hidden[0]], initializer=layers.xavier_initializer_conv2d()) all_weights['dec_b2'] = tf.Variable(tf.zeros([1], dtype=tf.float32)) all_weights['enc_w3'] = tf.get_variable("enc_w3", shape=[self.kernel_size[3], self.kernel_size[3], self.n_hidden[2], self.n_hidden[3]], initializer=layers.xavier_initializer_conv2d()) all_weights['enc_b3'] = tf.Variable(tf.zeros([self.n_hidden[3]], dtype=tf.float32)) all_weights['Coef'] = tf.Variable(1.0e-4 * tf.ones([self.test_size, self.train_size], tf.float32), name='Coef') return all_weights
这段代码定义了模型中所有的权重参数,包括卷积层和全连接层的权重、偏置项,以及稀疏编码器中的系数矩阵。其中,`tf.get_variable()` 函数用于创建或获取给定名称的变量,其返回值为创建的变量或已存在的变量。对于卷积层的权重参数,使用 `layers.xavier_initializer_conv2d()` 函数进行初始化,该函数实现了 Xavier 初始化方法,可以有效地避免梯度消失或梯度爆炸的问题。偏置项则初始化为全零向量。稀疏编码器中的系数矩阵被初始化为一个大小为 `(test_size, train_size)` 的全一矩阵乘以 $10^{-4}$。最后,函数返回一个字典,包含了所有的权重参数。
阅读全文