Y_train = X_train.unsqueeze(1), Y_train.unsqueeze(1)
时间: 2024-05-30 20:16:38 浏览: 103
This code seems to be converting the 1-dimensional tensors X_train and Y_train into 2-dimensional tensors by adding an extra dimension at the beginning of each tensor.
The .unsqueeze(1) method is used to add a new dimension at index 1 for each tensor.
For example, if X_train was originally a tensor of shape (100,), this code would convert it into a tensor of shape (100,1). Similarly, if Y_train was originally a tensor of shape (100,), this code would convert it into a tensor of shape (100,1).
This conversion may be useful if you want to perform operations that require tensors of the same shape.
相关问题
Y_train = X_train.unsqueeze(1), Y_train.unsqueeze(1)作用
这两个代码的作用是将数据集中的每个样本的维度从一维度扩展到二维度。具体来说,X_train.unsqueeze(1)将原来的大小为(N,)的训练数据张量X_train变为了大小为(N,1)的张量,其中N是训练数据的样本数量。同理,Y_train.unsqueeze(1)将原来的大小为(N,)的训练标签张量Y_train变为了大小为(N,1)的张量。这样做的目的是为了方便后续深度学习模型的训练和预测,因为通常情况下深度学习模型需要输入二维度数据,其中第一维度表示样本数量,第二维度表示每个样本的特征或标签。
#模型 class Wine_net(nn.Module): def __init__(self): super(Wine_net, self).__init__() self.ln1=nn.LayerNorm(11) self.fc1=nn.Linear(11,22) self.fc2=nn.Linear(22,44) self.fc3=nn.Linear(44,1) def forward(self,x): x=self.ln1(x) x=self.fc1(x) x=nn.functional.relu(x) x=self.fc2(x) x=nn.functional.relu(x) x = self.fc3(x) x = nn.functional.softmax(x,dim=1) return x # 读取数据 df = pd.read_csv('winequality.csv') df1=df.drop('quality',axis=1) df2=df['quality'] train_x=torch.tensor(df1.values, dtype=torch.float32) train_y=torch.tensor(df2.values,dtype=torch.float32) train_y = train_y.unsqueeze(1) # 定义模型、损失函数和优化器 model=Wine_net() loss_fn=nn.MSELoss() optimizer =torch.optim.SGD(model.parameters(), lr=0.1) # 训练模型 for epoch in range(10): # 前向传播 print(epoch) y_pred = model(train_x) print(y_pred) print(epoch,'预测') # 计算损失 loss = loss_fn(y_pred, train_y) # 反向传播 optimizer.zero_grad() loss.backward() optimizer.step() print(loss)
这段代码实现了一个简单的神经网络模型(Wine_net),使用了MSE损失函数和SGD优化器来训练模型,训练数据是来自winequality.csv文件中的数据。
在模型定义中,Wine_net继承了nn.Module类,并在构造函数中定义了网络结构,包括三个全连接层(fc1、fc2、fc3)和一个LayerNorm层(ln1)。在forward方法中,将输入数据x传入网络中,并经过一系列的线性变换和激活函数后得到输出结果。
在训练模型时,使用一个循环来迭代训练模型10次。在每次迭代过程中,都会输出当前的损失函数值。为了进行反向传播和更新模型参数,需要调用optimizer.zero_grad()方法清空之前的梯度信息,调用loss.backward()方法计算当前的梯度信息,调用optimizer.step()方法更新模型参数。
阅读全文