写一个transformer模块代码
时间: 2023-10-14 18:14:32 浏览: 123
好的,以下是一个简单的Transformer模块的代码实现:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, num_heads):
super().__init__()
self.d_model = d_model
self.num_heads = num_heads
assert d_model % num_heads == 0
self.depth = d_model // num_heads
self.wq = nn.Linear(d_model, d_model)
self.wk = nn.Linear(d_model, d_model)
self.wv = nn.Linear(d_model, d_model)
self.fc = nn.Linear(d_model, d_model)
def forward(self, query, key, value, mask=None):
batch_size = query.size(0)
# Linearly project the queries, keys, and values
Q = self.wq(query)
K = self.wk(key)
V = self.wv(value)
# Split the queries, keys, and values into num_heads pieces
Q = Q.view(batch_size * self.num_heads, -1, self.depth)
K = K.view(batch_size * self.num_heads, -1, self.depth)
V = V.view(batch_size * self.num_heads, -1, self.depth)
# Calculate the dot products of the queries and keys
scores = torch.bmm(Q, K.transpose(1, 2)) / torch.sqrt(torch.tensor(self.d_model).float())
# Apply the mask (if provided)
if mask is not None:
mask = mask.unsqueeze(1)
scores = scores.masked_fill(mask == 0, -1e9)
# Apply softmax to the scores
softmax_scores = F.softmax(scores, dim=-1)
# Multiply the softmax scores by the values
output = torch.bmm(softmax_scores, V)
# Reshape the output and apply a linear layer
output = output.view(batch_size, -1, self.num_heads * self.depth)
output = self.fc(output)
return output
class PositionwiseFeedForward(nn.Module):
def __init__(self, d_model, d_ff):
super().__init__()
self.linear1 = nn.Linear(d_model, d_ff)
self.linear2 = nn.Linear(d_ff, d_model)
def forward(self, x):
x = F.relu(self.linear1(x))
x = self.linear2(x)
return x
class EncoderLayer(nn.Module):
def __init__(self, d_model, num_heads, d_ff):
super().__init__()
self.multihead_attention = MultiHeadAttention(d_model, num_heads)
self.norm1 = nn.LayerNorm(d_model)
self.positionwise_feedforward = PositionwiseFeedForward(d_model, d_ff)
self.norm2 = nn.LayerNorm(d_model)
def forward(self, x, mask=None):
# Apply multi-head attention
attention_output = self.multihead_attention(x, x, x, mask=mask)
# Add residual connection and apply layer normalization
output = self.norm1(x + attention_output)
# Apply position-wise feedforward network
ff_output = self.positionwise_feedforward(output)
# Add residual connection and apply layer normalization
output = self.norm2(output + ff_output)
return output
class Transformer(nn.Module):
def __init__(self, input_dim, output_dim, d_model, num_heads, d_ff, num_layers, dropout):
super().__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.d_model = d_model
self.num_heads = num_heads
self.d_ff = d_ff
self.num_layers = num_layers
self.dropout = dropout
self.embedding = nn.Embedding(input_dim, d_model)
self.position_encoding = nn.Embedding(1000, d_model)
self.layers = nn.ModuleList([EncoderLayer(d_model, num_heads, d_ff) for _ in range(num_layers)])
self.fc_out = nn.Linear(d_model, output_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, src, src_mask=None):
# Create positions tensor
positions = torch.arange(0, src.shape[1]).unsqueeze(0).repeat(src.shape[0], 1).to(src.device)
pos_enc = self.position_encoding(positions)
# Get the embedded input
embedded_input = self.embedding(src)
# Add the positional encoding to the embedded input
x = embedded_input + pos_enc
x = self.dropout(x)
# Apply the transformer layers
for layer in self.layers:
x = layer(x, mask=src_mask)
# Apply the final output layer
x = self.fc_out(x)
return x
```
这个代码实现了一个简单的Transformer模块。其中包括了Multi-Head Attention、Position-wise Feedforward等子模块。可以通过调整参数来修改模型的深度、宽度和dropout等超参数。
阅读全文