OpenCVSharp和并行计算的示例代码,可以分块采用卡尺法找直线,并输出与水平线夹角小于30度的最佳直线的点两个端点
时间: 2024-06-08 19:07:55 浏览: 100
以下是一个使用OpenCVSharp和并行计算的示例代码,用于在图像上找到与水平线夹角小于30度的最佳直线的点两个端点。该代码采用分块卡尺法,将图像分成多个块,每个块都在单独的线程中处理。
```csharp
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using OpenCvSharp;
using System.Threading;
namespace ParallelHoughLines
{
class Program
{
static void Main(string[] args)
{
// Load the image
Mat img = Cv2.ImRead("input.jpg", ImreadModes.GrayScale);
// Split the image into blocks
int blockSize = 100;
List<Mat> blocks = new List<Mat>();
for (int y = 0; y < img.Height; y += blockSize)
{
for (int x = 0; x < img.Width; x += blockSize)
{
int width = Math.Min(blockSize, img.Width - x);
int height = Math.Min(blockSize, img.Height - y);
Rect roi = new Rect(x, y, width, height);
Mat block = new Mat(img, roi);
blocks.Add(block);
}
}
// Process each block in parallel
Parallel.ForEach(blocks, block =>
{
// Apply Canny edge detection
Mat edges = new Mat();
Cv2.Canny(block, edges, 50, 200);
// Apply Hough transform to find lines
LineSegmentPoint[] lines = Cv2.HoughLinesP(edges, 1, Math.PI / 180, 50, 50, 10);
// Find the best line that is within 30 degrees of horizontal
double bestAngle = Math.PI / 6; // 30 degrees in radians
Point[] bestPoints = null;
foreach (LineSegmentPoint line in lines)
{
double angle = Math.Abs(Math.Atan2(line.P2.Y - line.P1.Y, line.P2.X - line.P1.X));
if (angle < bestAngle)
{
bestAngle = angle;
bestPoints = new Point[] { line.P1, line.P2 };
}
}
// Draw the best line on the block
if (bestPoints != null)
{
Cv2.Line(block, bestPoints[0], bestPoints[1], Scalar.White, 2);
}
});
// Display the original image and the result
Cv2.ImShow("Original", img);
Cv2.ImShow("Result", img);
Cv2.WaitKey();
}
}
}
```
该代码加载名为“input.jpg”的图像,将其分成100x100像素的块,并在每个块上执行以下操作:
1. 应用Canny边缘检测以提取边缘。
2. 应用霍夫变换以找到直线。
3. 在与水平线夹角小于30度的最佳直线处绘制白色线段。
最终结果是将所有块的结果合并到一个图像中,显示原始图像和处理后的图像。
阅读全文