fuselayers2 = nn.Sequential( # nn.Conv2d(inplanes*2, inplanes*2, 3, padding=1, bias=False), # nn.BatchNorm2d(inplanes*2), # nn.ReLU(inplace=True), nn.Conv2d(inplanes*2, inplanes, 3, padding=1, bias=False), nn.BatchNorm2d(inplanes), nn.ReLU(inplace=True), nn.Conv2d(inplanes, inplanes, 3, padding=1, bias=False), nn.BatchNorm2d(inplanes), nn.ReLU(inplace=True), )
时间: 2024-01-16 07:04:13 浏览: 64
这段代码中同样包含了注释符号“#”,不会影响代码的执行。这段代码定义了一个名为fuselayers2的神经网络层序列,同样用于图像处理中的低层特征融合。它也包含了三个卷积层和三个批归一化层以及三个ReLU激活函数。其中,第一个卷积层的输入通道数是inplanes的2倍,但同样被注释掉了,没有被执行,第二个和第三个卷积层的输入输出通道数均为inplanes。与fuselayers1不同的是,它的输入通道数与输出通道数相同,因此只进行了特征的融合,没有改变特征的数量。
相关问题
class TPCNN(nn.Module): def __init__(self, num_class=10, head_payload=False): super(TPCNN, self).__init__() # 上 self.uconv1 = nn.Sequential( # nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1, dilation=1, bias=True), nn.BatchNorm2d(16, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) self.uconv2 = nn.Sequential( # nn.Conv2d(16, 32, kernel_size=3, stride=2, padding=1, dilation=1, bias=True), nn.BatchNorm2d(32, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) # 中 self.mconv1 = nn.Sequential( # nn.Conv2d(1, 32, kernel_size=3, stride=2, padding=1, dilation=1, bias=True), nn.BatchNorm2d(32, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) # 下 self.dconv1 = nn.Sequential( # nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1, dilation=1, bias=True), nn.BatchNorm2d(32, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), nn.MaxPool2d(kernel_size=2) ) self.uconv3 = nn.Sequential( # nn.Conv2d(96, 128, kernel_size=3, stride=1, padding=1, dilation=1, bias=True), nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) self.mconv2 = nn.Sequential( # nn.Conv2d(96, 128, kernel_size=3, stride=2, padding=1, dilation=1, bias=True), nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) self.dconv2 = nn.Sequential( # nn.Conv2d(96, 128, kernel_size=3, stride=1, padding=1, dilation=1, bias=True), nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) self.uconv4 = nn.Sequential( # nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, dilation=1, bias=True), nn.BatchNorm2d(512, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) self.globalconv1 = nn.Sequential( nn.Conv2d(896, 1024, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(1024, eps=1e-05, momentum=0.9, affine=True), nn.ReLU() ) self.dmaxpool = nn.MaxPool2d(kernel_size=2,padding=1) # self.lstm1 = nn.LSTM(256,512, 2) # self.lstm2 = nn.LSTM(self.i_size*2,self.i_size*2, 2) self.avpool = nn.AdaptiveAvgPool2d(2) # self.globallstm = nn.LSTM(512, 256, 1) self.fc1 = nn.Linear(1024*2*2, 512) self.fc2 = nn.Linear(512, num_class)
这段代码定义了一个名为TPCNN的类,继承自nn.Module。它具有一个num_class参数,默认值为10,以及一个head_payload参数,其默认值为False。在__init__函数中,它首先调用父类的构造函数,然后定义了该类的其余属性和方法。
fuselayers1 = nn.Sequential( # nn.Conv2d(low_level_planes*2, low_level_planes*2, 3, padding=1, bias=False), # nn.BatchNorm2d(low_level_planes*2), # nn.ReLU(inplace=True), nn.Conv2d(low_level_planes*2, low_level_planes, 3, padding=1, bias=False), nn.BatchNorm2d(low_level_planes), nn.ReLU(inplace=True), nn.Conv2d(low_level_planes, low_level_planes, 3, padding=1, bias=False), nn.BatchNorm2d(low_level_planes), nn.ReLU(inplace=True), )
这段代码中的注释符号“#”表示注释,不会影响代码的执行。具体来说,这段代码定义了一个名为fuselayers1的神经网络层序列,它主要用于图像处理中的低层特征融合。具体来说,它包含了三个卷积层和三个批归一化层以及三个ReLU激活函数。其中,第一个卷积层的输入通道数是低层特征的2倍,但被注释掉了,没有被执行,第二个和第三个卷积层的输入输出通道数均为低层特征的数量。这样设计的目的是将低层特征和高层特征进行融合,使得网络可以更好地理解图像中的细节信息。
阅读全文