def get_loaders(cfg, logger): logger.info("Loading training data (final training data for vtab)...") if cfg.DATA.NAME.startswith("vtab-"): train_loader = data_loader.construct_trainval_loader(cfg) else: train_loader = data_loader.construct_train_loader(cfg) logger.info("Loading validation data...") # not really needed for vtab val_loader = data_loader.construct_val_loader(cfg) logger.info("Loading test data...") if cfg.DATA.NO_TEST: logger.info("...no test data is constructed") test_loader = None else: test_loader = data_loader.construct_test_loader(cfg) return train_loader, val_loader, test_loader
时间: 2023-06-24 13:06:13 浏览: 99
这段代码是用来加载训练数据、验证数据和测试数据的。首先根据配置文件中的DATA.NAME属性来判断数据集是否为"vtab-"开头,如果是,则调用construct_trainval_loader函数来构造训练数据和验证数据的加载器;否则,调用construct_train_loader函数来构造训练数据的加载器。然后,调用construct_val_loader函数来构造验证数据的加载器。最后,如果配置文件中的DATA.NO_TEST属性为True,则没有测试数据,test_loader为None;否则,调用construct_test_loader函数来构造测试数据的加载器。最终返回train_loader、val_loader和test_loader三个加载器。其中,logger用于记录日志信息。
相关问题
def train(cfg, args): # clear up residual cache from previous runs if torch.cuda.is_available(): torch.cuda.empty_cache() # main training / eval actions here # fix the seed for reproducibility if cfg.SEED is not None: torch.manual_seed(cfg.SEED) np.random.seed(cfg.SEED) random.seed(0) # setup training env including loggers logging_train_setup(args, cfg) logger = logging.get_logger("visual_prompt") train_loader, val_loader, test_loader = get_loaders(cfg, logger) logger.info("Constructing models...") model, cur_device = build_model(cfg) logger.info("Setting up Evalutator...") evaluator = Evaluator() logger.info("Setting up Trainer...") trainer = Trainer(cfg, model, evaluator, cur_device) if train_loader: trainer.train_classifier(train_loader, val_loader, test_loader) else: print("No train loader presented. Exit") if cfg.SOLVER.TOTAL_EPOCH == 0: trainer.eval_classifier(test_loader, "test", 0)
这是一个训练函数的代码,它接受两个参数:cfg 和 args。在函数中,首先清除之前运行的缓存,然后设置随机种子以便实现可重复性。接下来,设置日志记录器,获取数据加载器并构建模型。然后设置评估器和训练器,并调用训练器的 train_classifier 方法来训练分类器。如果没有提供训练数据加载器,则输出“没有训练加载器呈现。退出”。最后,如果 SOLVER.TOTAL_EPOCH 为 0,则调用训练器的 eval_classifier 方法在测试数据集上评估分类器。
logging_train_setup(args, cfg) logger = logging.get_logger("visual_prompt") train_loader, val_loader, test_loader = get_loaders(cfg, logger) logger.info("Constructing models...") model, cur_device = build_model(cfg) logger.info("Setting up Evalutator...") evaluator = Evaluator() logger.info("Setting up Trainer...") trainer = Trainer(cfg, model, evaluator, cur_device)
这段代码中,首先通过调用 `logging_train_setup(args, cfg)` 来设置日志记录器和模型训练所需的各种参数。然后通过调用 `get_loaders(cfg, logger)` 来获取训练集、验证集和测试集的数据加载器。接着通过调用 `build_model(cfg)` 构造模型,并将其和当前设备(如 CPU 或 GPU)的信息保存在 `model` 和 `cur_device` 中。然后通过调用 `Evaluator()` 来构造一个评估器对象。最后通过调用 `Trainer(cfg, model, evaluator, cur_device)` 来构造一个训练器对象,该对象将使用上述对象和参数来进行模型训练。
阅读全文