#寻参 from sklearn.model_selection import GridSearchCV from sklearn.naive_bayes import MultinomialNB param_grid = { "alpha":np.concatenate( [ np.arange(0.0001,0.001,0.0001), np.arange(0.001,0.01,0.001), np.arange(0.01,0.1,0.01), np.arange(0.1,1,0.1), np.arange(1,10,1), np.arange(10,100,5) ] ) } model = MultinomialNB() grid_cv_model = GridSearchCV(model,param_grid,n_jobs=-1,verbose=3,cv=3) grid_cv_model.fit(x_train_df,y_train)
时间: 2023-11-24 18:06:34 浏览: 72
naive-bayes-with-python.rar_naive bayes
这段代码是用来进行朴素贝叶斯模型的参数寻优的。具体来说,代码中:
- `GridSearchCV` 是一个网格搜索交叉验证工具,可以帮助我们自动寻找最优的模型参数。
- `MultinomialNB` 是朴素贝叶斯分类器的一种,代码中使用的就是这个分类器。
- `param_grid` 是一个字典类型,用来指定我们要进行参数寻优的参数及其取值范围。在这个例子中,我们对朴素贝叶斯分类器的超参数 alpha 进行调优,将其取值范围分成了6个区间,每个区间内的取值范围不同,共计调优了 113 个不同的参数组合。
- `model` 是我们要调优的模型,即朴素贝叶斯分类器。
- `n_jobs=-1` 表示使用所有的 CPU 核心来进行模型训练,加快运行速度。
- `verbose=3` 表示输出调参过程中的详细日志信息。
- `cv=3` 表示使用 3 折交叉验证来评估每个参数组合的性能。
阅读全文