基于贝叶斯的股票预测python代码实现
时间: 2023-07-25 13:07:26 浏览: 121
基于贝叶斯的股票预测可以使用贝叶斯线性回归模型来实现。以下是一个简单的Python代码实现:
首先,需要导入所需的库和数据集:
```python
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import BayesianRidge
from sklearn.metrics import mean_squared_error
data = pd.read_csv('stock_data.csv')
```
接着,对数据集进行分割,将其划分为训练集和测试集:
```python
X = data[['Feature 1', 'Feature 2', ... , 'Feature n']]
y = data['Target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
```
然后,对特征进行多项式转换:
```python
poly = PolynomialFeatures(degree=2)
X_train_poly = poly.fit_transform(X_train)
X_test_poly = poly.transform(X_test)
```
接着,使用贝叶斯线性回归模型进行拟合:
```python
model = BayesianRidge()
model.fit(X_train_poly, y_train)
```
最后,使用模型对测试集进行预测,并计算均方误差:
```python
y_pred = model.predict(X_test_poly)
mse = mean_squared_error(y_test, y_pred)
print('Mean Squared Error:', mse)
```
完整代码如下:
```python
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import BayesianRidge
from sklearn.metrics import mean_squared_error
data = pd.read_csv('stock_data.csv')
X = data[['Feature 1', 'Feature 2', ... , 'Feature n']]
y = data['Target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
poly = PolynomialFeatures(degree=2)
X_train_poly = poly.fit_transform(X_train)
X_test_poly = poly.transform(X_test)
model = BayesianRidge()
model.fit(X_train_poly, y_train)
y_pred = model.predict(X_test_poly)
mse = mean_squared_error(y_test, y_pred)
print('Mean Squared Error:', mse)
```
阅读全文