报错NameError: name 'num_features' is not defined
时间: 2023-10-08 16:05:53 浏览: 263
抱歉,这是我的疏忽。在上面的代码中,`num_features`是一个变量,需要在代码中定义。你可以根据需要设置`num_features`的值。例如,如果你有3个实体属性,可以将`num_features`设置为3,如下所示:
```
num_features = 3
feature_matrix = np.zeros((len(G.nodes()), num_features))
for i, node in enumerate(G.nodes()):
properties = []
for prop in node:
properties.append(G.nodes[node][prop])
feature_matrix[i] = properties
```
请注意,这里假设每个节点都有3个实体属性,如果有的节点不满足这个条件,需要相应地修改代码。
相关问题
import cv2 import numpy as np # 提取图像的HOG特征 def get_hog_features(image): hog = cv2.HOGDescriptor() hog_features = hog.compute(image) return hog_features # 加载训练数据集 train_data = [r"I:\18Breakageratecalculation\SVM run\detection_cut\whole\train128"] train_labels = [r"I:\18Breakageratecalculation\SVM run\detection_cut\whole\train128\labels.txt"] for i in range(num_samples): image = cv2.imread('image_'+str(i)+'.jpg', 0) hog_features = get_hog_features(image) hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) color_hist = cv2.calcHist([hsv_image], [0, 1], None, [180, 256], [0, 180, 0, 256]) color_features = cv2.normalize(color_hist, color_hist).flatten() train_data.append(hog_features) train_labels.append(labels[i]) # 训练SVM模型 svm = cv2.ml.SVM_create() svm.setType(cv2.ml.SVM_C_SVC) svm.setKernel(cv2.ml.SVM_LINEAR) svm.train(np.array(train_data), cv2.ml.ROW_SAMPLE, np.array(train_labels)) # 对测试图像进行分类 test_image = cv2.imread('I:\18Breakageratecalculation\mask-slic use\maskSLIC-master\result\split\result2\maskslic2_roi.png', 0) test_features = get_hog_features(test_image) result = svm.predict(test_features.reshape(1,-1)) # 显示分割结果 result_image = np.zeros(test_image.shape, np.uint8) for i in range(test_image.shape[0]): for j in range(test_image.shape[1]): if result[i,j] == 1: result_image[i,j] = 255 cv2.imshow('I:\18Breakageratecalculation\mask-slic use\maskSLIC-master\result\split\result2\Result.png', result_image) cv2.waitKey(0) cv2.destroyAllWindows()
这段代码中也没有定义`num_samples`这个变量,所以在执行`for i in range(num_samples):`这个循环时,会报错`NameError: name 'num_samples' is not defined`。你需要在代码中定义并赋值`num_samples`这个变量,例如:`num_samples = 10`。然后你需要检查循环的范围是否正确,确保它不会超过你的数据集中的图像数量。
阅读全文