系统找不到指定的路径。: 'D:\\mnist_datasets\\mnist_train.csv\\MNIST'
时间: 2023-12-14 10:05:35 浏览: 127
根据提供的引用内容,可以看出系统找不到指定的路径是因为路径中包含了文件名。正确的路径应该是'D:\\mnist_datasets\\mnist_train.csv',而不是'D:\\mnist_datasets\\mnist_train.csv\\MNIST'。请检查路径是否正确,并确保文件名不包含在路径中。
相关问题
(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()修改该代码更换为从我的路径中读取,地址为E:\date\mnist.npz
好的,根据您的需求,我可以给您提供如下修改后的代码:
```python
import os
import csv
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D
# 定义数据集路径
data_path = 'E:/date/mnist.npz'
# 定义权重文件路径
weights_path = 'E:/weight.csv'
# 定义输出目录路径
output_path = 'E:/output'
# 加载数据集
with np.load(data_path) as data:
train_images = data['x_train']
train_labels = data['y_train']
test_images = data['x_test']
test_labels = data['y_test']
# 数据预处理
train_images = train_images.reshape((60000, 28, 28, 1))
train_images = train_images / 255.0
test_images = test_images.reshape((10000, 28, 28, 1))
test_images = test_images / 255.0
train_labels = tf.keras.utils.to_categorical(train_labels)
test_labels = tf.keras.utils.to_categorical(test_labels)
# 定义卷积神经网络模型
model = Sequential([
Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
MaxPooling2D((2, 2)),
Conv2D(64, (3, 3), activation='relu'),
MaxPooling2D((2, 2)),
Conv2D(64, (3, 3), activation='relu'),
Flatten(),
Dense(64, activation='relu'),
Dense(10, activation='softmax')
])
# 加载权重
weights = csv_to_weights(weights_path)
# 将权重赋值给卷积神经网络模型
model.set_weights([weights])
# 编译模型
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
# 训练模型
history = model.fit(train_images, train_labels, epochs=5, validation_data=(test_images, test_labels))
# 保存模型
model.save(os.path.join(output_path, 'model.h5'))
# 输出最终识别率
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)
```
代码中直接从 `mnist.npz` 文件中加载数据集,然后进行预处理。
RuntimeError Traceback (most recent call last) /tmp/ipykernel_24830/2888675824.py in <module> 19 print('The type of mnist_ds:', type(mnist_ds)) 20 ---> 21 print("Number of pictures contained in the mnist_ds:",mnist_ds.get_dataset_size()) # 60000 pictures in total 22 23 dic_ds = mnist_ds.create_dict_iterator() # Convert dataset to dictionary type ~/anaconda3/envs/MindSpore/lib/python3.7/site-packages/mindspore/dataset/engine/datasets.py in get_dataset_size(self) 1625 if self.dataset_size is None: 1626 runtime_getter = self.__init_size_getter() -> 1627 self.dataset_size = runtime_getter[0].GetDatasetSize(False) 1628 runtime_getter[2].close_pool() 1629 runtime_getter[2].notify_watchdog()
根据您提供的代码和错误信息,看起来是在使用MindSpore框架时出现了一个RuntimeError。这个错误信息显示在获取mnist_ds数据集大小时出现了问题,可能是因为数据集中没有正确的大小信息。建议您仔细检查数据集的格式和内容,确保其符合MindSpore框架的要求。如果问题仍然存在,请提供更多的代码和错误信息以便更好地帮助您解决问题。
阅读全文