dp = [0x1f1f1f1f] * MAXN

时间: 2023-12-24 10:05:02 浏览: 100
这段代码定义了一个长度为 MAXN 的 dp 数组,其中每个元素都初始化为 0x1f1f1f1f。这通常用于动态规划问题中,表示某些状态或转移方程的初值。这个值相当于十进制的 1061109567,是一个比较大的数,通常表示为正无穷大,表示当前状态或转移方程还没有被计算过。在具体的动态规划问题中,这个值可能会有所不同,需要根据具体问题来进行定义。
相关问题

using namespace std; const int maxn = 205; const int INF = 0x3f3f3f3f; int d[maxn][maxn]; int terminal[maxn], vis[maxn][maxn]; map<int, int> been[maxn]; int n, m, k; int line[10000];

下面是将该段代码转换为C语言的过程: ```c #include <stdio.h> #include <map.h> const int maxn = 205; const int INF = 0x3f3f3f3f; int d[maxn][maxn]; int terminal[maxn], vis[maxn][maxn]; map<int, int> been[maxn]; int n, m, k; int line[10000]; int main() { // code here ... return 0; } ``` 需要注意的细节有: - C语言中没有 `using namespace std;` 这样的语句,需要手动使用 `std::` 前缀来访问 `namespace` 中的成员。 - `map` 属于 C++ STL 中的容器,C语言中没有类似的容器。可以使用 `unordered_map` 来代替 `map`,或者手动实现一个哈希表。 - `const` 关键字也需要在 C语言中使用。 - 变量的定义和类型需要根据题目而定,例如 `line` 数组的大小和类型需要根据题目而定。

请给出下列这段代码的时间复杂度分析: const int maxn = 350;//题目给出的最大数字 char neck[maxn*2];//项链数组所存储最大数字 int n,ans = 0,lb[maxn*2] = {0},lr[maxn*2] = {0},rb[maxn*2] = {0},rr[maxn*2] = {0}; int max(int a,int b) {return (a>b)?a:b; } int main() { scanf("%d\n",&n); for(int i=

这段代码的时间复杂度分析如下: 1. 定义常量 maxn,时间复杂度为 O(1)。 2. 定义字符数组 neck,时间复杂度为 O(maxn)。 3. 定义整型变量 n、ans 和四个整型数组 lb、lr、rb、rr,时间复杂度为 O(1)。 4. 定义函数 max,时间复杂度为 O(1)。 5. 执行 scanf 函数,时间复杂度为 O(1)。 6. 执行 for 循环,时间复杂度为 O(2*maxn)。 7. 在 for 循环中执行了两次 max 函数,时间复杂度为 O(2)。 8. 总时间复杂度为 O(maxn)。 因此,这段代码的时间复杂度为 O(maxn)。
阅读全文

相关推荐

解释下这段代码 #include<cstdio> #include<queue> using namespace std; #define int long long const int MAXN=400+5,MAXM=2e5+5,INF=0x3f3f3f3f3f3f3f3f; int n,m; int su,en[MAXM],lt[MAXM],hd[MAXN]; int dis[MAXN]; bool viz[MAXM],vis[MAXN]; int nxt[MAXN][2]; bool isok[MAXM]; struct node{ int ix,vl; bool operator>(const node &t)const { if(vl!=t.vl) return vl>t.vl; return ix<t.ix; } }; inline int rd() { int x=0,f=1; char ch=getchar(); while(ch<'0'||ch>'9') { if(ch=='-') f=-1; ch=getchar(); } while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+(ch^48),ch=getchar(); return x*f; } void write(int x) { if(x<0){putchar('-'),write(-x);return;} if(x>9) write(x/10),putchar(x%10+48); else putchar(x+48); } inline void add(int u,int v) { en[++su]=v,lt[su]=hd[u],hd[u]=su; } inline int Dij(int x) { priority_queue<node,vector<node>,greater<node>> q; for(int i=1;i<=m;++i) viz[i]=(i==x)?1:0; for(int i=1;i<=n;++i) vis[i]=0,dis[i]=INF; q.push({1,0}); vis[1]=1; dis[1]=0; while(!q.empty()) { int u=q.top().ix;q.pop(); for(int i=hd[u];i;i=lt[i]) { if(viz[i]) continue; int v=en[i]; if(dis[v]>dis[u]+1) { nxt[v][0]=u,nxt[v][1]=i; dis[v]=dis[u]+1; if(!vis[v]) vis[v]=1,q.push({v,dis[v]}); } } } return dis[n]; } signed main() { n=rd(),m=rd(); for(int i=1;i<=m;++i) { int u=rd(),v=rd(); add(u,v); } int Max=Dij(0); Max=(Max==INF)?-1:Max; int tmp=n; while(tmp!=0) { isok[nxt[tmp][1]]=1; tmp=nxt[tmp][0]; } for(int x=1,ans;x<=m;++x) { if(isok[x]) { ans=Dij(x); if(ans==INF) ans=-1; } else ans=Max; write(ans),putchar('\n'); } return 0; }

大家在看

recommend-type

COBIT操作手册

COBIT操作手册大全,欢迎大家下载使用
recommend-type

2000-2022年 上市公司-股价崩盘风险相关数据(数据共52234个样本,包含do文件、excel数据和参考文献).zip

上市公司股价崩盘风险是指股价突然大幅下跌的可能性。这种风险可能由多种因素引起,包括公司的财务状况、市场环境、政策变化、投资者情绪等。 测算方式:参考《管理世界》许年行老师和《中国工业经济》吴晓晖老师的做法,使用负收益偏态系数(NCSKEW)和股票收益上下波动比率(DUVOL)度量股价崩盘风险。 数据共52234个样本,包含do文件、excel数据和参考文献。 相关数据指标 stkcd、证券代码、year、NCSKEW、DUVOL、Crash、Ret、Sigma、证券代码、交易周份、周个股交易金额、周个股流通市值、周个股总市值、周交易天数、考虑现金红利再投资的周个股回报率、市场类型、周市场交易总股数、周市场交易总金额、考虑现金红利再投资的周市场回报率(等权平均法)、不考虑现金红利再投资的周市场回报率(等权平均法)、考虑现金红利再投资的周市场回报率(流通市值加权平均法)、不考虑现金红利再投资的周市场回报率(流通市值加权平均法)、考虑现金红利再投资的周市场回报率(总市值加权平均法)、不考虑现金红利再投资的周市场回报率(总市值加权平均法)、计算周市场回报率的有效公司数量、周市场流通市值、周
recommend-type

IEEE_Std_1588-2008

IEEE-STD-1588-2008 标准文档(英文版),里面有关PTP profile关于1588-2008的各种定义
recommend-type

SC1235设计应用指南_V1.2.pdf

SC1235设计应用指南_V1.2.pdf
recommend-type

CG2H40010F PDK文件

CREE公司CG2H40010F功率管的PDK文件。用于ADS的功率管仿真。

最新推荐

recommend-type

"基于Comsol的采空区阴燃现象研究:速度、氧气浓度、瓦斯浓度与温度分布的二维模型分析",comsol采空区阴燃 速度,氧气浓度,瓦斯浓度及温度分布 二维模型 ,comsol; 采空区;

"基于Comsol的采空区阴燃现象研究:速度、氧气浓度、瓦斯浓度与温度分布的二维模型分析",comsol采空区阴燃。 速度,氧气浓度,瓦斯浓度及温度分布。 二维模型。 ,comsol; 采空区; 阴燃; 速度; 氧气浓度; 瓦斯浓度; 温度分布; 二维模型;,"COMSOL模拟采空区阴燃:速度、浓度与温度分布的二维模型研究"
recommend-type

安全驱动的边云数据协同策略研究.pdf

安全驱动的边云数据协同策略研究.pdf
recommend-type

MATLAB代码实现电-气-热综合能源系统耦合优化调度模型:精细电网、气网与热网协同优化,保姆级注释参考文档详可查阅 ,MATLAB代码:电-气-热综合能源系统耦合优化调度 关键词:综合能源系统 优

MATLAB代码实现电-气-热综合能源系统耦合优化调度模型:精细电网、气网与热网协同优化,保姆级注释参考文档详可查阅。,MATLAB代码:电-气-热综合能源系统耦合优化调度 关键词:综合能源系统 优化调度 电气热耦合 参考文档:自编文档,非常细致详细,可联系我查阅 仿真平台:MATLAB YALMIP+cplex gurobi 主要内容:代码主要做的是一个考虑电网、热网以及气网耦合调度的综合能源系统优化调度模型,考虑了电网与气网,电网与热网的耦合,算例系统中,电网部分为10机39节点的综合能源系统,气网部分为比利时20节点的配气网络,潮流部分电网是用了直流潮流,气网部分也进行了线性化的操作处理,代码质量非常高,保姆级的注释以及人性化的模块子程序,所有数据均有可靠来源 ,关键词:MATLAB代码; 电-气-热综合能源系统; 耦合优化调度; 电网; 热网; 气网; 潮流; 直流潮流; 线性化处理; 保姆级注释; 人性化模块子程序; 可靠数据来源。,MATLAB代码:电-气-热综合能源系统耦合优化调度模型(保姆级注释,数据来源可靠)
recommend-type

《2023年未来就业报告》:人工智能对未来就业市场的影响及应对措施

内容概要:本文详细探讨了人工智能(AI)对就业市场的深远影响及其发展趋势。首先介绍了到2027年,44%的工人核心技能将受技术变革尤其是AI影响的事实,并提及自动化可能取代部分工作的现象。其次指出虽然某些职位面临风险,但也带来了全新的职业机遇与现有角色改进的可能性,关键在于人类要学会借助AI释放自身潜力并培养软实力,以适应快速发展的科技需求。再者,强调终身学习理念下企业和教育培训须革新教学手段与评估机制,以便紧跟AI进化速率,为个体和社会持续注入新动力。最后提到了教育机构应当加快调整步伐以匹配技术变革的速度,并利用AI实现个性化的教育,进而提升学习者的适应能力和解决问题的能力。 适用人群:政策制定者、企业管理层、在职人员及教育工作者,还有广大学生群体均能从中获得启示。 使用场景及目标:面向关注未来职场动向及教育发展方向的专业人士,提供前瞻性思考角度,助力各界积极规划职业生涯路径或调整教育资源分配策略。 其他说明:本文综合多位行业领袖的观点展开讨论,旨在唤起社会各界共同思考AI带来的变革及对策,而非单方面渲染危机感。
recommend-type

2025最新空调与制冷作业考试题及答案.doc

2025最新空调与制冷作业考试题及答案.doc
recommend-type

Droste:探索Scala中的递归方案

标题和描述中都提到的“droste”和“递归方案”暗示了这个话题与递归函数式编程相关。此外,“droste”似乎是指一种递归模式或方案,而“迭代是人类,递归是神圣的”则是一种比喻,强调递归在编程中的优雅和力量。为了更好地理解这个概念,我们需要分几个部分来阐述。 首先,要了解什么是递归。在计算机科学中,递归是一种常见的编程技术,它允许函数调用自身来解决问题。递归方法可以将复杂问题分解成更小、更易于管理的子问题。在递归函数中,通常都会有一个基本情况(base case),用来结束递归调用的无限循环,以及递归情况(recursive case),它会以缩小问题规模的方式调用自身。 递归的概念可以追溯到数学中的递归定义,比如自然数的定义就是一个经典的例子:0是自然数,任何自然数n的后继者(记为n+1)也是自然数。在编程中,递归被广泛应用于数据结构(如二叉树遍历),算法(如快速排序、归并排序),以及函数式编程语言(如Haskell、Scala)中,它提供了强大的抽象能力。 从标签来看,“scala”,“functional-programming”,和“recursion-schemes”表明了所讨论的焦点是在Scala语言下函数式编程与递归方案。Scala是一种多范式的编程语言,结合了面向对象和函数式编程的特点,非常适合实现递归方案。递归方案(recursion schemes)是函数式编程中的一个高级概念,它提供了一种通用的方法来处理递归数据结构。 递归方案主要分为两大类:原始递归方案(原始-迭代者)和高级递归方案(例如,折叠(fold)/展开(unfold)、catamorphism/anamorphism)。 1. 原始递归方案(primitive recursion schemes): - 原始递归方案是一种模式,用于定义和操作递归数据结构(如列表、树、图等)。在原始递归方案中,数据结构通常用代数数据类型来表示,并配合以不变性原则(principle of least fixed point)。 - 在Scala中,原始递归方案通常通过定义递归类型类(如F-Algebras)以及递归函数(如foldLeft、foldRight)来实现。 2. 高级递归方案: - 高级递归方案进一步抽象了递归操作,如折叠和展开,它们是处理递归数据结构的强大工具。折叠允许我们以一种“下降”方式来遍历和转换递归数据结构,而展开则是“上升”方式。 - Catamorphism是将数据结构中的值“聚合成”单一值的过程,它是一种折叠操作,而anamorphism则是从单一值生成数据结构的过程,可以看作是展开操作。 - 在Scala中,高级递归方案通常与类型类(如Functor、Foldable、Traverse)和高阶函数紧密相关。 再回到“droste”这个词,它很可能是一个递归方案的实现或者是该领域内的一个项目名。根据文件名称“droste-master”,可以推测这可能是一个仓库,其中包含了与递归方案相关的Scala代码库或项目。 总的来说,递归方案和“droste”项目都属于高级函数式编程实践,它们为处理复杂的递归数据结构提供了一种系统化和模块化的手段。在使用Scala这类函数式语言时,递归方案能帮助开发者写出更简洁、可维护的代码,同时能够更安全、有效地处理递归结构的深层嵌套数据。
recommend-type

Simulink DLL性能优化:实时系统中的高级应用技巧

# 摘要 本文全面探讨了Simulink DLL性能优化的理论与实践,旨在提高实时系统中DLL的性能表现。首先概述了性能优化的重要性,并讨论了实时系统对DLL性能的具体要求以及性能评估的方法。随后,详细介绍了优化策略,包括理论模型和系统层面的优化。接着,文章深入到编码实践技巧,讲解了高效代码编写原则、DLL接口优化和
recommend-type

rust语言将文本内容转换为音频

Rust是一种系统级编程语言,它以其内存安全性和高性能而闻名。虽然Rust本身并不是专门用于音频处理的语言,但它可以与其他库配合来实现文本转音频的功能。通常这种任务需要借助外部库,比如`ncurses-rs`(控制台界面库)结合`wave`、`audio-kit-rs`等音频处理库,或者使用更专业的第三方库如`flac`、`opus`等进行编码。 以下是使用Rust进行文本转音频的一个简化示例流程: 1. 安装必要的音频处理库:首先确保已经安装了`cargo install flac wave`等音频编码库。 2. 导入库并创建音频上下文:导入`flac`库,创建一个可以写入FLAC音频
recommend-type

安卓蓝牙技术实现照明远程控制

标题《基于安卓蓝牙的远程控制照明系统》指向了一项技术实现,即利用安卓平台上的蓝牙通信能力来操控照明系统。这一技术实现强调了几个关键点:移动平台开发、蓝牙通信协议以及照明控制的智能化。下面将从这三个方面详细阐述相关知识点。 **安卓平台开发** 安卓(Android)是Google开发的一种基于Linux内核的开源操作系统,广泛用于智能手机和平板电脑等移动设备上。安卓平台的开发涉及多个层面,从底层的Linux内核驱动到用户界面的应用程序开发,都需要安卓开发者熟练掌握。 1. **安卓应用框架**:安卓应用的开发基于一套完整的API框架,包含多个模块,如Activity(界面组件)、Service(后台服务)、Content Provider(数据共享)和Broadcast Receiver(广播接收器)等。在远程控制照明系统中,这些组件会共同工作来实现用户界面、蓝牙通信和状态更新等功能。 2. **安卓生命周期**:安卓应用有着严格的生命周期管理,从创建到销毁的每个状态都需要妥善管理,确保应用的稳定运行和资源的有效利用。 3. **权限管理**:由于安卓应用对硬件的控制需要相应的权限,开发此类远程控制照明系统时,开发者必须在应用中声明蓝牙通信相关的权限。 **蓝牙通信协议** 蓝牙技术是一种短距离无线通信技术,被广泛应用于个人电子设备的连接。在安卓平台上开发蓝牙应用,需要了解和使用安卓提供的蓝牙API。 1. **蓝牙API**:安卓系统通过蓝牙API提供了与蓝牙硬件交互的能力,开发者可以利用这些API进行设备发现、配对、连接以及数据传输。 2. **蓝牙协议栈**:蓝牙协议栈定义了蓝牙设备如何进行通信,安卓系统内建了相应的协议栈来处理蓝牙数据包的发送和接收。 3. **蓝牙配对与连接**:在实现远程控制照明系统时,必须处理蓝牙设备间的配对和连接过程,这包括了PIN码验证、安全认证等环节,以确保通信的安全性。 **照明系统的智能化** 照明系统的智能化是指照明设备可以被远程控制,并且可以与智能设备进行交互。在本项目中,照明系统的智能化体现在能够响应安卓设备发出的控制指令。 1. **远程控制协议**:照明系统需要支持一种远程控制协议,安卓应用通过蓝牙通信发送特定指令至照明系统。这些指令可能包括开/关灯、调整亮度、改变颜色等。 2. **硬件接口**:照明系统中的硬件部分需要具备接收和处理蓝牙信号的能力,这通常通过特定的蓝牙模块和微控制器来实现。 3. **网络通信**:如果照明系统不直接与安卓设备通信,还可以通过Wi-Fi或其它无线技术进行间接通信。此时,照明系统内部需要有相应的网络模块和协议栈。 **相关技术实现示例** 在具体技术实现方面,假设我们正在开发一个名为"LightControl"的安卓应用,该应用能够让用户通过蓝牙与家中的智能照明灯泡进行交互。以下是几个关键步骤: 1. **用户界面设计**:设计简洁直观的用户界面,提供必要的按钮和指示灯,用于显示当前设备状态和发送控制指令。 2. **蓝牙操作实现**:编写代码实现搜索蓝牙设备、配对、建立连接及数据传输的功能。安卓应用需扫描周围蓝牙设备,待用户选择相应照明灯泡后,进行配对和连接,之后便可以发送控制指令。 3. **指令解码与执行**:照明设备端需要有对应的程序来监听蓝牙信号,当接收到特定格式的指令时,执行相应的控制逻辑,如开启/关闭电源、调节亮度等。 4. **安全性考虑**:确保通信过程中的数据加密和设备认证,防止未授权的访问或控制。 在技术细节上,开发者需要对安卓开发环境、蓝牙通信流程有深入的了解,并且在硬件端具备相应的编程能力,以保证应用与硬件的有效对接和通信。 通过上述内容的详细阐述,可以看出安卓蓝牙远程控制照明系统的实现是建立在移动平台开发、蓝牙通信协议和智能化硬件控制等多个方面的综合技术运用。开发者需要掌握的不仅仅是编程知识,还应包括对蓝牙技术的深入理解和对移动设备通信机制的全面认识。
recommend-type

【Simulink DLL集成】:零基础快速上手,构建高效模型策略

# 摘要 本文综合介绍了Simulink模型与DLL(动态链接库)的集成过程,详细阐述了从模型构建基础到DLL集成的高级策略。首先概述了Simulink模型构建的基本概念、参数化和仿真调试方法。接着,深入探讨了DLL的基础知识、在Simulink中的集成