Z11上的椭圆曲线E:y^2=x^3+x+6 (a)请确定该椭圆曲线上所有的点。 (b)生成元G=(2,7),私钥nB=2,公钥PB=nB*G=(5,2),明文消息编码成一个数8,选择一点Pt=(3,5),加密时选取随机数k=3,求加解密过程。

时间: 2024-05-21 12:16:01 浏览: 213
好的,我知道了。针对您的问题,我的回答如下: (a) 为确定椭圆曲线上所有的点,我们需要在有限域上进行运算。假设Z11是我们的有限域,则该椭圆曲线上所有的点可以用以下公式表示: E = {(x,y) | x,y ∈ Z11, y^2 ≡ x^3 + 6(mod 11)} 通过枚举x和y,可以得到该椭圆曲线上的所有点: E = {(0,5), (0,6), (2,7), (2,4), (3,2), (3,9), (4,4), (4,7), (8,3), (8,8), (9,2), (9,9)} (b) 加密过程: (1) 选择明文消息编码成的数m=8,选择加密时的随机数k=3。 (2) 选择生成元G=(2,7)作为公钥,计算公钥PB=nB*G=(5,2),其中私钥nB=2。 (3) 选择一点Pt=(3,5)作为加密时的随机点。 (4) 计算C1=k*G=(1,6),C2=m*Pt=(8,2)。 (5) 加密结果为(C1,C2)=(1,6),(8,2)。 解密过程: (1) 选择私钥nB=2。 (2) 计算D=nB*C1=(2,0)。 (3) 计算Pt=C2-D=(6,2)。 (4) 将Pt的x坐标作为解密后的明文消息,即m=6。 因此,加密后的密文为(C1,C2)=(1,6),(8,2),解密后的明文消息为m=6。
相关问题

(8)Y Z11上的椭圆曲线E:y^2=x^3+x+6 (a)请确定该椭圆曲线上所有的点。 (b)生成元G=(2,7),私钥nB=2,公钥PB=nB*G=(5,2),明文消息编码成一个数8,选择一点Pt=(3,5),加密时选取随机数k=3,求加解密过程。

(a) 该椭圆曲线的所有点可以通过以下步骤确定: - 对于任意x值,计算y^2 = x^3 + 6,如果y^2可以被整数完全平方,则(x, y)为该椭圆曲线上的一个点。 - 如果y^2不能被整数完全平方,则(x, y)不是该椭圆曲线上的点。 (b) 加密过程如下: - 明文消息编码成一个数8,选择一点Pt=(3,5)作为消息的加密形式。 - 选择随机数k=3,并计算k*G=(2,7)+...+(2,7)(共计算3次),得到加密后的密文点C=(3,1)。 - 发送密文C和公钥PB=(5,2)给接收方。 解密过程如下: - 接收方使用私钥nB=2,在椭圆曲线上计算nB*C,即2*(3,1)=(3,5),得到密文点对应的明文消息Pt=(3,5)。

设p=11,E是由y2≡x3+x+6(mod 11)所确定的有限域Z11上的椭圆曲线。设α=(2,7),d=7,请计算: (1)β的值。 (2)取k=2,假设明文x=(9,1),试计算其对应的密文。

(1)根据题意,椭圆曲线上的点满足y^2 ≡ x^3 + x + 6 (mod 11)。将α代入得:7^2 ≡ 2^3 + 2 + 6 (mod 11),即49 ≡ 10 (mod 11),因此α是椭圆曲线上的一个点。 由于d=7,我们需要计算β=dα。首先计算2α=(2,7)+(2,7)=(5,2)。然后计算4α=2(2α)=2(5,2)=(10,2)。最后计算β=dα=7α=4α+2α+α=(10,2)+(5,2)+(2,7)=(6,6),因此β的值为(6,6)。 (2)首先选择明文x=(9,1),随机选择一个整数k=2作为加密密钥。然后计算kα=2α=(5,2)。接着计算明文点x在椭圆曲线上的对应点P=(9,1)在kα上的投影,即将斜率k=2代入点P和kα的求斜率公式中,得到: k = (y2 - y1) / (x2 - x1) = (2 - 1) / (5 - 9) = 3 (mod 11) 因此,P在kα上的投影为Q=(8, 3)。密文为(kα,P+kb)=(5,2),(8,3+7)=(8,10)),即密文为((5,2),(8,10))。
阅读全文

相关推荐

如何将a1,a2,f1,f2保存在txt文件中:m0=2 m=2 N=20 x1=100rand(1,m0); y1=100rand(1,m0); x2=100rand(1,m0); y2=100rand(1,m0); for i=1:N z11(i)=10 end z1=z11' for i=1:N z22(i)=90 end z2=z22' %for i=1:N %z1(i)=10 %end %for i=1:N %z2(i)=90 %end for i=1:m0 for j=i+1:m0 p1=rand(1,1); p2=rand(1,1); if p1>0.5 a1(i,j)=1; a1(j,i)=0; end if p2>0.5 a2(i,j)=1; a2(j,i)=0; end end end for k=m0+1:N M=size(a1,1);p=zeros(1,M); M1=size(a2,1);p1=zeros(1,M1); x0=100rand(1,1);y0=100rand(1,1); x1(k)=x0;y1(k)=y0; x2(k)=x0;y2(k)=y0; if length(find(a1==1))==0 p(:)=1/M; else for i=1:M p(i)=length(a1(i,:)==1)/length(find(a1==1)); end if length(find(a2==1))==0 p1(:)=1/M1; else for i=1:M1 p1(i)=length(a2(i,:)==1)/length(find(a2==1)); end end end pp=cumsum(p); pp1=cumsum(p1); for i=1:m random_data=rand(1,1); random_data1=rand(1,1); aa=find(pp>=random_data);jj=aa(1); aa1=find(pp1>=random_data1);jj1=aa1(1); a1(k,jj)=1; a1(jj,k)=1; a2(k,jj1)=1; a2(jj1,k)=1; end end % 计算每条边的流量矩阵 for i=1:N for j=1:N if a1(i,j)==1 % 如果节点i和节点j之间有边,则计算其流量矩阵 if i<=m0 && j<=m0 % 如果是起始节点之间的边,则流量为10 f1(i,j)=10; else % 否则,根据节点i和节点j之间的距离计算流量 d=sqrt((x1(i)-x1(j))^2+(y1(i)-y1(j))^2); f1(i,j)=z1(i)*z1(j)/d; end else f1(i,j)=0; end if a2(i,j)==1 % 如果节点i和节点j之间有边,则计算其流量矩阵 if i<=m0 && j<=m0 % 如果是起始节点之间的边,则流量为90 f2(i,j)=90; else % 否则,根据节点i和节点j之间的距离计算流量 d=sqrt((x2(i)-x2(j))^2+(y2(i)-y2(j))^2); f2(i,j)=z2(i)*z2(j)/d; end else f2(i,j)=0; end end end

zip
zip

最新推荐

recommend-type

若依管理存在任何文件读取漏洞检测系统,渗透测试.zip

若依管理存在任何文件读取漏洞检测系统,渗透测试若一管理系统发生任意文件读取若依管理系统存在任何文件读取免责声明使用本程序请自觉遵守当地法律法规,出现一切后果均与作者无关。本工具旨在帮助企业快速定位漏洞修复漏洞,仅限安全授权测试使用!严格遵守《中华人民共和国网络安全法》,禁止未授权非法攻击站点!由于作者用户欺骗造成的一切后果与关联。毒品用于非法一切用途,非法使用造成的后果由自己承担,与作者无关。食用方法python3 若依管理系统存在任意文件读取.py -u http://xx.xx.xx.xxpython3 若依管理系统存在任意文件读取.py -f url.txt
recommend-type

【java毕业设计】学生社团管理系统源码(完整前后端+说明文档+LW).zip

学生社团的管理系统,是一款功能丰富的实用性网站,网站采用了前台展示后台管理的模式进行开发设计的,系统前台包括了站内新闻展示,社团信息管理以及社团活的参与报名,在线用户注册,系统留言板等实用性功能。 网站的后台是核心,针对系统的前台的功能,学生的社团报名审核以及社团信息的发布等功能进行管理。本系统可以综合成为4个用户权限,普通注册用户,社团团员用户,社团长以及系统管理员。系统管理员主要负责网站的整体信息管理,普通用户可以进行社团活动的浏览以及申社团的加入,社团团员是普通注册用户审核成功后的一个用户权限。经过管理员审核同意,社团团员可以升级成为社团的团长,系统权限划分是本系统的核心功能。 环境说明: 开发语言:Java,jsp JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea 部署容器:tomcat
recommend-type

【java毕业设计】音乐+商城的设计与实现源码(完整前后端+说明文档+LW).zip

各个角色的具体功能如下: 1.网站首页 新闻信息展示:主要展示了音乐商城演唱会的相关新闻信息,了解最新的新闻动态。 在线留言:用户可以在线进行留言,管理员可以对留言信息进行管理。 用户注册:实现了游客在线注册成为网站会员的功能,游客输入个人信息进行注册。 演出票务购买:以列表形式展示了演出的票务信息,并能在线进行购买,可以按照城市和分 类进行查询,并进行购买。 音乐商品:注册用户可以在线进行音乐相关商品的购买。 2.系统管理员 管理员信息管理:实现了对管理员的基本信息管理,能够对管理员密码进行修改。 注册用户管理:可以对注册用户的基本信息进行审核管理。 站内新闻管理:实现了音乐网站的新闻信息的管理。 订单信息管理:可以对票务订单信息和购买音乐商品的订单信息进行管理。 用户结账管理:可以查看用户的结账信息,并能对结账信息进行管理。 留言板管理:实现了对前台首页的留言板信息的管理,并能对留言信息进行回复。 系统管理:实现了系统的管理,包括系统公告,系统简介等。 3.系统管理员注册用户 个人资料管理:实现了对个人的资料信息的管理,并能对个人资料进行修改。 我的订单:查...
recommend-type

基于JAVA+SpringBoot+MySQL的网上图书商城设计与实现.docx

基于JAVA+SpringBoot+MySQL的网上图书商城设计与实现.docx
recommend-type

C语言数组操作:高度检查器编程实践

资源摘要信息: "C语言编程题之数组操作高度检查器" C语言是一种广泛使用的编程语言,它以其强大的功能和对低级操作的控制而闻名。数组是C语言中一种基本的数据结构,用于存储相同类型数据的集合。数组操作包括创建、初始化、访问和修改元素以及数组的其他高级操作,如排序、搜索和删除。本资源名为“c语言编程题之数组操作高度检查器.zip”,它很可能是一个围绕数组操作的编程实践,具体而言是设计一个程序来检查数组中元素的高度。在这个上下文中,“高度”可能是对数组中元素值的一个比喻,或者特定于某个应用场景下的一个术语。 知识点1:C语言基础 C语言编程题之数组操作高度检查器涉及到了C语言的基础知识点。它要求学习者对C语言的数据类型、变量声明、表达式、控制结构(如if、else、switch、循环控制等)有清晰的理解。此外,还需要掌握C语言的标准库函数使用,这些函数是处理数组和其他数据结构不可或缺的部分。 知识点2:数组的基本概念 数组是C语言中用于存储多个相同类型数据的结构。它提供了通过索引来访问和修改各个元素的方式。数组的大小在声明时固定,之后不可更改。理解数组的这些基本特性对于编写有效的数组操作程序至关重要。 知识点3:数组的创建与初始化 在C语言中,创建数组时需要指定数组的类型和大小。例如,创建一个整型数组可以使用int arr[10];语句。数组初始化可以在声明时进行,也可以在之后使用循环或单独的赋值语句进行。初始化对于定义检查器程序的初始状态非常重要。 知识点4:数组元素的访问与修改 通过使用数组索引(下标),可以访问数组中特定位置的元素。在C语言中,数组索引从0开始。修改数组元素则涉及到了将新值赋给特定索引位置的操作。在编写数组操作程序时,需要频繁地使用这些操作来实现功能。 知识点5:数组高级操作 除了基本的访问和修改之外,数组的高级操作包括排序、搜索和删除。这些操作在很多实际应用中都有广泛用途。例如,检查器程序可能需要对数组中的元素进行排序,以便于进行高度检查。搜索功能用于查找特定值的元素,而删除操作则用于移除数组中的元素。 知识点6:编程实践与问题解决 标题中提到的“高度检查器”暗示了一个具体的应用场景,可能涉及到对数组中元素的某种度量或标准进行判断。编写这样的程序不仅需要对数组操作有深入的理解,还需要将这些操作应用于解决实际问题。这要求编程者具备良好的逻辑思维能力和问题分析能力。 总结:本资源"c语言编程题之数组操作高度检查器.zip"是一个关于C语言数组操作的实际应用示例,它结合了编程实践和问题解决的综合知识点。通过实现一个针对数组元素“高度”检查的程序,学习者可以加深对数组基础、数组操作以及C语言编程技巧的理解。这种类型的编程题目对于提高编程能力和逻辑思维能力都有显著的帮助。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧

![【KUKA系统变量进阶】:揭秘从理论到实践的5大关键技巧](https://giecdn.blob.core.windows.net/fileuploads/image/2022/11/17/kuka-visual-robot-guide.jpg) 参考资源链接:[KUKA机器人系统变量手册(KSS 8.6 中文版):深入解析与应用](https://wenku.csdn.net/doc/p36po06uv7?spm=1055.2635.3001.10343) # 1. KUKA系统变量的理论基础 ## 理解系统变量的基本概念 KUKA系统变量是机器人控制系统中的一个核心概念,它允许
recommend-type

如何使用Python编程语言创建一个具有动态爱心图案作为背景并添加文字'天天开心(高级版)'的图形界面?

要在Python中创建一个带动态爱心图案和文字的图形界面,可以结合使用Tkinter库(用于窗口和基本GUI元素)以及PIL(Python Imaging Library)处理图像。这里是一个简化的例子,假设你已经安装了这两个库: 首先,安装必要的库: ```bash pip install tk pip install pillow ``` 然后,你可以尝试这个高级版的Python代码: ```python import tkinter as tk from PIL import Image, ImageTk def draw_heart(canvas): heart = I
recommend-type

基于Swift开发的嘉定单车LBS iOS应用项目解析

资源摘要信息:"嘉定单车汇(IOS app).zip" 从标题和描述中,我们可以得知这个压缩包文件包含的是一套基于iOS平台的移动应用程序的开发成果。这个应用是由一群来自同济大学软件工程专业的学生完成的,其核心功能是利用位置服务(LBS)技术,面向iOS用户开发的单车共享服务应用。接下来将详细介绍所涉及的关键知识点。 首先,提到的iOS平台意味着应用是为苹果公司的移动设备如iPhone、iPad等设计和开发的。iOS是苹果公司专有的操作系统,与之相对应的是Android系统,另一个主要的移动操作系统平台。iOS应用通常是用Swift语言或Objective-C(OC)编写的,这在标签中也得到了印证。 Swift是苹果公司在2014年推出的一种新的编程语言,用于开发iOS和macOS应用程序。Swift的设计目标是与Objective-C并存,并最终取代后者。Swift语言拥有现代编程语言的特性,包括类型安全、内存安全、简化的语法和强大的表达能力。因此,如果一个项目是使用Swift开发的,那么它应该会利用到这些特性。 Objective-C是苹果公司早前主要的编程语言,用于开发iOS和macOS应用程序。尽管Swift现在是主要的开发语言,但仍然有许多现存项目和开发者在使用Objective-C。Objective-C语言集成了C语言与Smalltalk风格的消息传递机制,因此它通常被认为是一种面向对象的编程语言。 LBS(Location-Based Services,位置服务)是基于位置信息的服务。LBS可以用来为用户提供地理定位相关的信息服务,例如导航、社交网络签到、交通信息、天气预报等。本项目中的LBS功能可能包括定位用户位置、查找附近的单车、计算骑行路线等功能。 从文件名称列表来看,包含的三个文件分别是: 1. ios期末项目文档.docx:这份文档可能是对整个iOS项目的设计思路、开发过程、实现的功能以及遇到的问题和解决方案等进行的详细描述。对于理解项目的背景、目标和实施细节至关重要。 2. 移动应用开发项目期末答辩.pptx:这份PPT文件应该是为项目答辩准备的演示文稿,里面可能包括项目的概览、核心功能演示、项目亮点以及团队成员介绍等。这可以作为了解项目的一个快速入门方式,尤其是对项目的核心价值和技术难点有直观的认识。 3. LBS-ofo期末项目源码.zip:这是项目的源代码压缩包,包含了完成单车汇项目所需的全部Swift或Objective-C代码。源码对于理解项目背后的逻辑和实现细节至关重要,同时也是评估项目质量、学习最佳实践、复用或扩展功能的基础。 综合上述信息,"嘉定单车汇(IOS app).zip"不仅仅是一个应用程序的压缩包,它还代表了一个团队在软件工程项目中的完整工作流程,包含了项目文档、演示材料和实际编码,为学习和评估提供了一个很好的案例。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依