outputs = torch.argmax(torch.softmax(outputs, dim=1), dim=1, keepdim=True)什么意思
时间: 2023-08-31 18:33:30 浏览: 184
pytorch_mnist-python源码.zip
5星 · 资源好评率100%
### 回答1:
这行代码使用了 PyTorch 框架中的函数,用于从模型的输出 `outputs` 中得到最终的预测结果。具体来说,该行代码完成以下操作:
1. 使用 `torch.softmax()` 函数将模型输出 `outputs` 在维度1上进行 softmax,使得每个输出的值在 0 到 1 之间,并且所有输出值的和等于 1。这一步通常被称为概率归一化。
2. 使用 `torch.argmax()` 函数在维度1上找到最大值的索引。因为经过 softmax 归一化后,输出值表示的是每个类别的概率,所以找到最大值的索引就对应着最终的预测类别。
3. 使用 `keepdim=True` 保持维度1的维度大小不变,这样最终输出的张量将是形状为 `[batch_size, 1]` 的二维张量,其中每一行是一个样本的预测类别。
综上所述,这行代码的作用是将模型输出 `outputs` 转化为预测结果的形式,其中预测结果是一个形状为 `[batch_size, 1]` 的二维张量。
### 回答2:
这行代码的含义为,在PyTorch中,使用torch.softmax()函数对outputs进行softmax操作,然后使用torch.argmax()函数找到每行中最大值的索引,并将结果保持为一维张量(即保持维度)。
具体而言,outputs是一个张量,它的维度为[N, C],其中N表示样本数量,C表示类别数量。torch.softmax()函数对outputs进行一行一行的softmax操作,使得每行的值都在0到1之间,并且每行的和为1。然后torch.argmax()函数找到每行中最大值的索引,返回一个一维张量,表示每个样本对应的预测类别。
通过在结果中使用keepdim=True参数,保持输出的维度不变,即最终得到的张量维度为[N, 1],表示每个样本的预测类别。这样做的目的是为了能够与标签进行比较,进行准确率等评估。
### 回答3:
这段代码是基于PyTorch框架中的一条指令。它的作用是对模型输出进行处理,并返回预测的类别。
具体地说,该指令的含义如下:
1. `torch.softmax(outputs, dim=1)`:通过对`outputs`进行softmax操作,对模型输出进行概率计算,将其转换为类别分布,其中`dim=1`表示在第一个维度上进行softmax操作。
2. `torch.argmax(..., dim=1, keepdim=True)`:通过对上一步中得到的概率分布使用`torch.argmax`函数,找到概率最大的类别索引。其中,`dim=1`表示在第一个维度上找到最大值,而`keepdim=True`表示保持输出的维度。
简而言之,该指令的目的是将模型输出的概率分布转换为预测的类别索引,即返回具有最高概率的类别。
阅读全文