利用TransH实现带有属性值知识图谱嵌入的实例代码
时间: 2023-12-26 16:06:01 浏览: 148
属性动画示例代码
5星 · 资源好评率100%
以下是使用TransH实现带有属性值知识图谱嵌入的Python代码示例:
```python
import numpy as np
import tensorflow as tf
# 定义实体和关系的嵌入维度
embedding_dim = 50
# 定义实体和关系的数量
entity_num = 100
relation_num = 20
# 定义属性嵌入维度
attribute_dim = 10
# 定义属性数量
attribute_num = 30
# 定义训练数据
train_data = np.array([[0, 1, 2, 3], [1, 2, 3, 4], [2, 3, 4, 5]])
# 定义实体和关系的嵌入向量
entity_embedding = tf.Variable(tf.random.normal([entity_num, embedding_dim], stddev=0.1))
relation_embedding = tf.Variable(tf.random.normal([relation_num, embedding_dim], stddev=0.1))
# 定义属性嵌入向量
attribute_embedding = tf.Variable(tf.random.normal([attribute_num, attribute_dim], stddev=0.1))
# 定义TransH中的关系向量投影矩阵
relation_projection = tf.Variable(tf.random.normal([relation_num, embedding_dim, attribute_dim], stddev=0.1))
# 定义正则化项系数
lambda_r = 0.001
# 定义模型
def transH(head, relation, tail, attribute):
# 获取实体和关系的嵌入向量
head_embed = tf.nn.embedding_lookup(entity_embedding, head)
relation_embed = tf.nn.embedding_lookup(relation_embedding, relation)
tail_embed = tf.nn.embedding_lookup(entity_embedding, tail)
# 获取属性嵌入向量
attribute_embed = tf.nn.embedding_lookup(attribute_embedding, attribute)
# 将关系向量投影到属性空间中
proj_relation = tf.matmul(relation_embed, relation_projection)
# 计算头尾实体在关系向量投影下的嵌入向量
head_proj = tf.matmul(head_embed, proj_relation)
tail_proj = tf.matmul(tail_embed, proj_relation)
# 计算头尾实体在属性空间中的嵌入向量
head_attribute = tf.matmul(head_embed, attribute_embed, transpose_b=True)
tail_attribute = tf.matmul(tail_embed, attribute_embed, transpose_b=True)
# 计算得分函数
score = tf.reduce_sum(tf.abs(head_proj + relation_embed - tail_proj) + lambda_r * tf.abs(head_attribute - tail_attribute), axis=1)
return score
# 定义优化器
optimizer = tf.optimizers.Adam(learning_rate=0.01)
# 定义训练函数
def train_step(head, relation, tail, attribute, label):
with tf.GradientTape() as tape:
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=transH(head, relation, tail, attribute), labels=label))
gradients = tape.gradient(loss, [entity_embedding, relation_embedding, attribute_embedding, relation_projection])
optimizer.apply_gradients(zip(gradients, [entity_embedding, relation_embedding, attribute_embedding, relation_projection]))
return loss.numpy()
# 训练模型
for epoch in range(100):
total_loss = 0
for i in range(train_data.shape[0]):
head, relation, tail, attribute = train_data[i]
label = 1.0
loss = train_step(head, relation, tail, attribute, label)
total_loss += loss
print('epoch %d, loss %.4f' % (epoch+1, total_loss/train_data.shape[0]))
```
在上述代码中,我们使用了TransH模型来进行知识图谱嵌入,其中包括实体、关系和属性的嵌入向量,以及关系向量投影矩阵。我们通过定义TransH模型的得分函数来计算头尾实体在属性空间下的距离,然后使用sigmoid交叉熵损失函数进行优化。最后,我们使用Adam优化器进行模型训练。
阅读全文