keras unet多分类代码
时间: 2023-10-14 13:06:15 浏览: 93
以下是使用Keras构建一个简单的多分类UNet模型的代码:
```python
from keras.models import Model
from keras.layers import Input, Conv2D, MaxPooling2D, Dropout, UpSampling2D, concatenate
from keras.utils import to_categorical
def unet(input_shape=(256, 256, 1), num_classes=3):
inputs = Input(input_shape)
# 编码器
conv1 = Conv2D(64, 3, activation='relu', padding='same')(inputs)
conv1 = Conv2D(64, 3, activation='relu', padding='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(128, 3, activation='relu', padding='same')(pool1)
conv2 = Conv2D(128, 3, activation='relu', padding='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(256, 3, activation='relu', padding='same')(pool2)
conv3 = Conv2D(256, 3, activation='relu', padding='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(512, 3, activation='relu', padding='same')(pool3)
conv4 = Conv2D(512, 3, activation='relu', padding='same')(conv4)
drop4 = Dropout(0.5)(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)
conv5 = Conv2D(1024, 3, activation='relu', padding='same')(pool4)
conv5 = Conv2D(1024, 3, activation='relu', padding='same')(conv5)
drop5 = Dropout(0.5)(conv5)
# 解码器
up6 = Conv2D(512, 2, activation='relu', padding='same')(UpSampling2D(size=(2,2))(drop5))
merge6 = concatenate([drop4, up6], axis=3)
conv6 = Conv2D(512, 3, activation='relu', padding='same')(merge6)
conv6 = Conv2D(512, 3, activation='relu', padding='same')(conv6)
up7 = Conv2D(256, 2, activation='relu', padding='same')(UpSampling2D(size=(2,2))(conv6))
merge7 = concatenate([conv3, up7], axis=3)
conv7 = Conv2D(256, 3, activation='relu', padding='same')(merge7)
conv7 = Conv2D(256, 3, activation='relu', padding='same')(conv7)
up8 = Conv2D(128, 2, activation='relu', padding='same')(UpSampling2D(size=(2,2))(conv7))
merge8 = concatenate([conv2, up8], axis=3)
conv8 = Conv2D(128, 3, activation='relu', padding='same')(merge8)
conv8 = Conv2D(128, 3, activation='relu', padding='same')(conv8)
up9 = Conv2D(64, 2, activation='relu', padding='same')(UpSampling2D(size=(2,2))(conv8))
merge9 = concatenate([conv1, up9], axis=3)
conv9 = Conv2D(64, 3, activation='relu', padding='same')(merge9)
conv9 = Conv2D(64, 3, activation='relu', padding='same')(conv9)
outputs = Conv2D(num_classes, 1, activation='softmax')(conv9)
model = Model(inputs=inputs, outputs=outputs)
return model
# 读取数据,x_train为训练数据,y_train为训练数据标签
# 将训练数据标签转换为one-hot编码
y_train = to_categorical(y_train, num_classes=3)
# 编译模型
model = unet(input_shape=(256, 256, 1), num_classes=3)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# 训练模型
model.fit(x_train, y_train, batch_size=32, epochs=10, validation_split=0.2)
```
该代码与单分类的UNet模型类似,不同之处在于输出层使用softmax激活函数,并且num_classes参数指定为类别数。在训练数据标签y_train上,需要将标签转换为one-hot编码,使用Keras的`to_categorical()`函数实现。在编译模型时,损失函数使用categorical_crossentropy,评价指标为accuracy。
阅读全文