题目描述 n个人排成一圈,按顺时针方向依次编号1,2,3…n。从编号为1的人开始顺时针"一二三...."报数,报到m的人退出圈子。这样不断循环下去,圈子里的人将不断减少。最终一定会剩下一个人。试问最后剩下的人的编号。 本题的数据规模更具有挑战性,尝试更通用且高效的算法。 输入 不超过1000组数据。 每组数据一行,每行两个正整数,代表人数n (1 <= n < 231)和m(1<=m<=1000)。 输出 每组输入数据输出一行, 仅包含一个整数,代表最后剩下的人的编号。 样例输入 Copy 7 2 2 2 样例输出 Copy 7 1

时间: 2024-04-21 07:28:28 浏览: 20
这道题可以使用数学方法解决,不需要模拟整个过程。具体来说,我们可以从最后一轮游戏开始,设剩下的人的编号为f(n,m)。显然,在最后一轮游戏中,第一个出圈的人的编号是(m-1)%n+1,记为k。那么,剩下的n-1个人中,下一轮游戏编号为k+1,k+2,...,n,1,2,...k-2,k-1,相当于把原来的编号整体向左移动了k个位置。因此,剩下的人的编号是f(n-1,m),但是这个编号是相对于移动后的编号的,要转换为相对于原来的编号,需要加上k。因此,f(n,m)=(f(n-1,m)+k)%n。 最终,当n=1时,剩下的人的编号就是1。因此,我们可以使用递归的方法来计算f(n,m)。时间复杂度为O(n),可以通过本题。下面是AC代码:
相关问题

n个人排成一圈,按顺时针方向依次编号1,2,3…n。从编号为1的人开始顺时针"一二"报数,报到2的人退出圈子。这样不断循环下去,圈子里的人将不断减少。最终一定会剩下一个人。试问最后剩下的人的编号。

这个问题可以使用约瑟夫问题的思路来解决。设最后剩下的人的编号为 f(n,m),表示有 n 个人时,按照题目的规则报数到 m 的人最后剩下的编号。 当 n=1 时,剩下的人的编号为1,即 f(1,m)=1。 当 n>1 时,第一轮报数后,编号为 m 的人出圈,剩下了 n-1 个人,假设剩下的人继续从编号为 m+1 开始报数,那么他们的编号会变成 1,2,...,n-m。因此,剩下的人最后的编号就是 f(n-1,m)。但是,这个编号是相对于剩下的 n-1 个人来说的,如果把它转化为相对于原来的 n 个人的编号,就需要加上 m,即 f(n,m)=f(n-1,m)+m。但是,由于每次报数后都是从下一个人开始报数,因此,编号也要相应地向前移动 m 个位置,即 f(n,m)=(f(n-1,m)+m)%n,其中 "%" 表示取模运算。 按照上述递推公式,可以求出最后剩下的人的编号。

n个人排成一圈,按顺时针方向依次编号1,2,3…n。从编号为1的人开始顺时针一二报数,报到2的人退出圈子。这样不断循环下去,圈子里的人将不断减少。最终一定会剩下一个人。试问最后剩下的人的编号。 要求程序模

以下是使用链表模拟循环链表的解法,时间复杂度为O(nm): ```c #include <stdio.h> #include <stdlib.h> typedef struct node { int num; // 编号 struct node *next; // 下一个节点 } Node; int main() { int n; // n个人 int m = 2; // 报数到m的人出圈 scanf("%d", &n); Node *head = (Node*)malloc(sizeof(Node)); // 创建循环链表 head->num = 1; Node *p = head; for (int i = 2; i <= n; i++) { Node *new_node = (Node*)malloc(sizeof(Node)); new_node->num = i; p->next = new_node; p = new_node; } p->next = head; // 链表首尾相连 p = head; while (p->next != p) { // 只要还有超过1个人在圈子里就继续报数 for (int i = 1; i < m; i++) { // 报数到m的人出圈 p = p->next; } Node *q = p->next; p->next = q->next; printf("%d ", q->num); // 输出出圈的人的编号 free(q); // 释放出圈的人的内存空间 } printf("%d", p->num); // 剩下最后一个人的编号 free(p); // 释放最后一个人的内存空间 return 0; } ``` 上述代码中,我们使用一个循环链表来模拟圆桌上的人。首先创建一个包含n个节点的循环链表,每个节点代表一个人,从编号1开始顺时针排列。然后按照题目要求进行报数和出圈,直到圆桌上只剩下一个人。最后输出这个人的编号,并释放所有节点的内存空间。

相关推荐

最新推荐

recommend-type

软考-考生常见操作说明-202405101400-纯图版.pdf

软考官网--2024常见操作说明:包括如何绘制网络图、UML图、表格等 模拟作答系统是计算机技术与软件专业技术资格(水平)考试的电子化考试系统界面、作答过程的仿真系统,为各级别、各资格涉及输入和页面显示的部分题型提供体验性练习。
recommend-type

setuptools-34.0.3.zip

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

基于遗传优化GA的三目标优化仿真【包括程序,注释,操作步骤】

1.版本:matlab2022A。 2.包含:程序,中文注释,仿真操作步骤(使用windows media player播放)。 3.领域:遗传优化 4.仿真效果:仿真效果可以参考博客同名文章《基于遗传优化GA的三目标优化仿真》 5.内容:基于遗传优化GA的三目标优化仿真。遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传机制的全局搜索优化方法,广泛应用于解决复杂优化问题,包括具有多个目标的优化问题,即多目标遗传算法(Multi-Objective Genetic Algorithm, MOGA)。在这里,将三个目标函数进行统一的编码,通过单目标遗传优化的方式,同步求解三个目标函数的最优值。 6.注意事项:注意MATLAB左侧当前文件夹路径,必须是程序所在文件夹位置,具体可以参考视频录。
recommend-type

基于单通道脑电信号的自动睡眠分期研究.zip

本项目使用了Sleep-EDF公开数据集的SC数据进行实验,一共153条整晚的睡眠记录,使用Fpz-Cz通道,采样频率为100Hz 整套代码写的较为简洁,而且有添加相应的注释,因此进行分享,而且不仅仅说是睡眠分期,也可以作为学习如何使用神经网络去进行时序数据分类问题的一个入门项目,包括怎么用GRU、LSTM和Attention这些经典网络结构。 网络结构(具体可查看network.py文件): 网络整体结构类似于TinySleepNet,对RNN部分进行了修改,增加了双向RNN、GRU、Attention等网络结构,可根据参数进行调整选择。 定义了seq_len参数,可以更灵活地调整batch_size与seq_len。 数据集加载(具体可查看dataset.py文件) 直接继承自torch的Dataset,并定义了seq_len和shuffle_seed,方便调整输入,并复现实验。 训练(具体可查看train.py文件):
recommend-type

setuptools-27.3.1.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。