针对二元函数满足Wolfe条件的线搜索算法的MATLAB例程
时间: 2023-12-02 11:02:53 浏览: 121
以下是一个针对二元函数满足Wolfe条件的线搜索算法的MATLAB例程,实现了Armijo条件和曲率条件的检查:
```matlab
function [alpha, num_evals] = wolfe_search(f, g, x, p, alpha_init)
% Set the initial values of alpha and other constants
alpha = alpha_init;
c1 = 1e-4;
c2 = 0.9;
max_evals = 100;
num_evals = 0;
% Evaluate the objective function and its gradient at the starting point
f0 = f(x(1), x(2));
g0 = g(x(1), x(2));
% Loop until the Wolfe conditions are satisfied or the maximum number of
% evaluations is reached
while num_evals < max_evals
% Evaluate the objective function and its gradient at the new point
f1 = f(x(1) + alpha*p(1), x(2) + alpha*p(2));
g1 = g(x(1) + alpha*p(1), x(2) + alpha*p(2));
% Check the Armijo condition
if f1 > f0 + c1*alpha*g0'*p
break;
end
% Check the curvature condition
if g1'*p < c2*g0'*p
break;
end
% If both conditions are satisfied, return the current alpha value
alpha_prev = alpha;
alpha = 0.5*(alpha + alpha_init);
num_evals = num_evals + 1;
end
% Return the number of function evaluations used
if num_evals == max_evals
fprintf('Maximum number of function evaluations reached\n');
end
end
```
该例程采用了传统的回溯线搜索算法,在每次迭代中计算一个新的alpha值,然后检查是否满足Armijo条件和曲率条件。如果两个条件都得到满足,就返回当前的alpha值。如果没有满足,则将alpha值减半并继续迭代,直到达到最大迭代次数或满足条件为止。
请注意,此代码仅为演示目的。在实际应用中,您可能需要根据您的需求进行修改。
阅读全文