优化这段代码:for i in range(len(sv_lines)): if (unused_path1 in sv_lines[i]) or (unused_path2 in sv_lines[i]) or (unused_path3 in sv_lines[i]) or (unused_path4 in sv_lines[i]) or (unused_path5 in sv_lines[i]) or (unused_path6 in sv_lines[i]) or (unused_path7 in sv_lines[i])or (unused_path8 in sv_lines[i])or (unused_path9 in sv_lines[i])or (unused_path10 in sv_lines[i])or (unused_path11 in sv_lines[i])or (unused_path12 in sv_lines[i])or (unused_path13 in sv_lines[i])or (unused_path14 in sv_lines[i])or (unused_path15 in sv_lines[i]): f_d.write(sv_lines[i]) else: f_remain.write(sv_lines[i]) f_d.close f_remain.close f_loglist.close

时间: 2023-05-20 14:07:10 浏览: 107
可以使用一个列表来存储所有的 unused_path,然后使用 any() 函数来检查每一行是否包含其中任意一个 unused_path,代码如下: unused_paths = [unused_path1, unused_path2, unused_path3, unused_path4, unused_path5, unused_path6, unused_path7, unused_path8, unused_path9, unused_path10, unused_path11, unused_path12, unused_path13, unused_path14, unused_path15] for line in sv_lines: if any(path in line for path in unused_paths): f_d.write(line) else: f_remain.write(line) f_d.close() f_remain.close() f_loglist.close()
相关问题

解释代码 if Cuda: if distributed: model_train = model_train.cuda(local_rank) model_train = torch.nn.parallel.DistributedDataParallel(model_train, device_ids=[local_rank], find_unused_parameters=True) else: model_train = torch.nn.DataParallel(model) cudnn.benchmark = True model_train = model_train.cuda() with open(train_annotation_path, encoding='utf-8') as f: train_lines = f.readlines() with open(test_annotation_path, encoding='utf-8') as f: val_lines = f.readlines() num_train = len(train_lines) num_val = len(val_lines) np.random.seed(10101) np.random.shuffle(train_lines) np.random.seed(None)

这段代码是用来对模型进行 GPU 加速并加载训练集和测试集。 首先,判断是否使用 GPU 进行训练,如果使用则进一步判断是否进行分布式训练。如果进行分布式训练,则将模型转移到当前进程所在的 GPU 上,并使用 `torch.nn.parallel.DistributedDataParallel` 方法将模型包装为分布式数据并行模型。在包装模型时,需要指定当前进程所在的 GPU ID,以及通过 `find_unused_parameters` 参数来指示是否查找未使用的参数,以避免出现异常。 如果未进行分布式训练,则使用 `torch.nn.DataParallel` 方法将模型包装为数据并行模型,并使用 `cudnn.benchmark = True` 来启用 cuDNN 自动寻找最适合当前硬件的卷积算法。最后,将模型转移到 GPU 上。 接下来,使用 `open` 函数打开训练集和测试集的注释文件,并读取其中的所有行。然后,使用 `len` 函数计算训练集和测试集的样本数量。接着,使用 `np.random.seed` 函数设置随机种子,并使用 `np.random.shuffle` 函数将训练集的所有行打乱,以增加训练的随机性。 最后,这段代码返回了读取的训练集和测试集行数。

#include "widget.h" #if !defined(Q_MOC_OUTPUT_REVISION) #error "The header file 'widget.h' doesn't include <QObject>." #elif Q_MOC_OUTPUT_REVISION != 63 #error "This file was generated using the moc from 4.8.6. It" #error "cannot be used with the include files from this version of Qt." #error "(The moc has changed too much.)" #endif QT_BEGIN_MOC_NAMESPACE static const uint qt_meta_data_Widget[] = { // content: 6, // revision 0, // classname 0, 0, // classinfo 0, 0, // methods 0, 0, // properties 0, 0, // enums/sets 0, 0, // constructors 0, // flags 0, // signalCount 0 // eod }; static const char qt_meta_stringdata_Widget[] = { "Widget\0" }; void Widget::qt_static_metacall(QObject *_o, QMetaObject::Call _c, int _id, void **_a) { Q_UNUSED(_o); Q_UNUSED(_id); Q_UNUSED(_c); Q_UNUSED(_a); } const QMetaObjectExtraData Widget::staticMetaObjectExtraData = { 0, qt_static_metacall }; const QMetaObject Widget::staticMetaObject = { { &QWidget::staticMetaObject, qt_meta_stringdata_Widget, qt_meta_data_Widget, &staticMetaObjectExtraData } }; #ifdef Q_NO_DATA_RELOCATION const QMetaObject &Widget::getStaticMetaObject() { return staticMetaObject; } #endif //Q_NO_DATA_RELOCATION const QMetaObject *Widget::metaObject() const { return QObject::d_ptr->metaObject ? QObject::d_ptr->metaObject : &staticMetaObject; } void *Widget::qt_metacast(const char *_clname) { if (!_clname) return 0; if (!strcmp(_clname, qt_meta_stringdata_Widget)) return static_cast<void*>(const_cast< Widget*>(this)); return QWidget::qt_metacast(_clname); } int Widget::qt_metacall(QMetaObject::Call _c, int _id, void **_a) { _id = QWidget::qt_metacall(_c, _id, _a); if (_id < 0) return _id; return _id; } QT_END_MOC_NAMESPACE,解释一下这段代码

这段代码是使用Qt的元对象系统自动生成的,用于实现Widget类的元对象。在这段代码中,首先判断是否包含QObject头文件,然后判断使用的moc版本是否与当前Qt版本匹配。接着定义了Widget类的元对象及相关信息,包括类名、类信息、方法、属性、枚举/集合等等。最后,定义了一些虚函数,包括qt_static_metacall、qt_metacast和qt_metacall,用于在运行时实现动态类型识别和类型转换。这些函数都是在基类QWidget中定义的虚函数的重载版本。整个过程都是由moc自动完成的。
阅读全文

相关推荐

优化代码 def cluster_format(self, start_time, end_time, save_on=True, data_clean=False, data_name=None): """ local format function is to format data from beihang. :param start_time: :param end_time: :return: """ # 户用簇级数据清洗 if data_clean: unused_index_col = [i for i in self.df.columns if 'Unnamed' in i] self.df.drop(columns=unused_index_col, inplace=True) self.df.drop_duplicates(inplace=True, ignore_index=True) self.df.reset_index(drop=True, inplace=True) dupli_header_lines = np.where(self.df['sendtime'] == 'sendtime')[0] self.df.drop(index=dupli_header_lines, inplace=True) self.df = self.df.apply(pd.to_numeric, errors='ignore') self.df['sendtime'] = pd.to_datetime(self.df['sendtime']) self.df.sort_values(by='sendtime', inplace=True, ignore_index=True) self.df.to_csv(data_name, index=False) # 调用基本格式化处理 self.df = super().format(start_time, end_time) module_number_register = np.unique(self.df['bat_module_num']) # if registered m_num is 0 and not changed, there is no module data if not np.any(module_number_register): logger.logger.warning("No module data!") sys.exit() if 'bat_module_voltage_00' in self.df.columns: volt_ref = 'bat_module_voltage_00' elif 'bat_module_voltage_01' in self.df.columns: volt_ref = 'bat_module_voltage_01' elif 'bat_module_voltage_02' in self.df.columns: volt_ref = 'bat_module_voltage_02' else: logger.logger.warning("No module data!") sys.exit() self.df.dropna(axis=0, subset=[volt_ref], inplace=True) self.df.reset_index(drop=True, inplace=True) self.headers = list(self.df.columns) # time duration of a cluster self.length = len(self.df) if self.length == 0: logger.logger.warning("After cluster data clean, no effective data!") raise ValueError("No effective data after cluster data clean.") self.cluster_stats(save_on) for m in range(self.mod_num): print(self.clusterid, self.mod_num) self.module_list.append(np.unique(self.df[f'bat_module_sn_{str(m).zfill(2)}'].dropna())[0])

for (int i = 0; i < agvs.size(); i++) { if (agvs[i].getLoad() == true) { // 如果是负载的状态 if (agvs[i].getCurrentX() == agvs[i].getEndX() && agvs[i].getCurrentY() == agvs[i].getEndY()) { // 如果到达终点 agvs[i].setLoad(false); // 设置为空载状态 agvs[i].setState(true); std :: cout << "agv__id :" << agvs[i].getid() << " ,agv_get_task_id :" << agvs[i].get_task_id() << endl; for (int j = 0; j < tasks.size(); j++) { if (tasks[j].id == agvs[i].get_task_id()) { completed_task_index = j; break; } } if (completed_task_index != -1) { tasks[completed_task_index].completed = 2; } task_to_agv(); // 更新任务分配 update(); // 更新AGV状态 } else { // 否则行驶到终点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node1 = new Node(agvs[i].getEndX(), agvs[i].getEndY()); std::vector<Node*> path_to_end = astar.getPath(start_node, end_node1); path_to_end.erase(path_to_end.begin()); std::vector<Node*> path; path.insert(path.end(), path_to_end.begin(), path_to_end.end()); paths[i] = path; } } else { // 如果是空载的状态 if (agvs[i].getCurrentX() == agvs[i].getStartX() && agvs[i].getCurrentY() == agvs[i].getStartY()) { // 如果到达起点 agvs[i].setLoad(true); // 设置为负载状态 } else { // 否则行驶到起点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node = new Node(agvs[i].getStartX(), agvs[i].getStartY()); std::vector<Node*> path_to_start = astar.getPath(start_node, end_node); std::vector<Node*> path; path.insert(path.end(), path_to_start.begin() + 1, path_to_start.end()); paths[i] = path; } } },爲什麽在MainWindow::paintEvent函數中,一查找paths數組,畫面就會卡死,怎麽修改

最新推荐

recommend-type

【中国房地产业协会-2024研报】2024年第三季度房地产开发企业信用状况报告.pdf

行业研究报告、行业调查报告、研报
recommend-type

【中国银行-2024研报】美国大选结果对我国芯片产业发展的影响和应对建议.pdf

行业研究报告、行业调查报告、研报
recommend-type

RM1135开卡工具B17A

RM1135开卡工具B17A
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自