relu(inplace=true)
时间: 2023-04-27 14:02:29 浏览: 115
relu(inplace=True)是一个函数,它是一种激活函数,用于神经网络中的前向传播过程。其中,inplace=True表示在原地进行操作,即将计算结果直接覆盖到输入张量中,而不是创建一个新的张量来存储结果。这样可以减少内存的使用,提高计算效率。
相关问题
描述这段代码 class VGGTest(nn.Module): def __init__(self, pretrained=True, numClasses=10): super(VGGTest, self).__init__() # conv1 1/2 self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, padding=1) self.relu1_1 = nn.ReLU(inplace=True) self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, padding=1) self.relu1_2 = nn.ReLU(inplace=True) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) # conv2 1/4 self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.relu2_1 = nn.ReLU(inplace=True) self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, padding=1) self.relu2_2 = nn.ReLU(inplace=True) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) # conv3 1/8 self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, padding=1) self.relu3_1 = nn.ReLU(inplace=True) self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.relu3_2 = nn.ReLU(inplace=True) self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.relu3_3 = nn.ReLU(inplace=True) self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) # conv4 1/16 self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, padding=1) self.relu4_1 = nn.ReLU(inplace=True) self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.relu4_2 = nn.ReLU(inplace=True) self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.relu4_3 = nn.ReLU(inplace=True) self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) # conv5 1/32 self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.relu5_1 = nn.ReLU(inplace=True) self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.relu5_2 = nn.ReLU(inplace=True) self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.relu5_3 = nn.ReLU(inplace=True) self.pool5 = nn.MaxPool2d(kernel_size=2, stride=2)
这段代码定义了一个名为VGGTest的神经网络模型,该模型使用了VGG网络的结构。它包含了5个卷积层和5个最大池化层,每个卷积层后面都跟着一个ReLU激活函数。其中第一个卷积层输入通道数为3,输出通道数为64,卷积核大小为3x3,padding为1,表示输入和输出的大小相同。接下来每个卷积层的输入通道数都为上一层的输出通道数,输出通道数依次是64,128,256,512,512。 每个最大池化层的kernel_size为2,stride为2,表示将输入图像的大小缩小一半。
你好,我用pytorch写了一个vgg16网络结构的代码,但是运行会报错:name 'self' is not defined。能帮我看看哪错了吗,原始代码如下:import torch import torchvision import torch.nn as nn class VGG16(nn.Module): def __init__(in_channels = 3,out_channels = 1000,num_hidden = 50288): super(VGG16, self).__init__() self.features = nn.Sequential( nn.Conv2d(in_channels,64,3,1,1), nn.ReLU(inplace=True), nn.Conv2d(64,64,3,1,1), nn.ReLU(inplace=True), nn.MaxPool2d(2,2), nn.Conv2d(64,128,3,1,1), nn.ReLU(inplace=True), nn.Conv2d(128,128,3,1,1), nn.ReLU(inplace=True), nn.MaxPool2d(2,2), nn.Conv2d(128, 256, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, 3, 1, 1), nn.ReLU(inplace=True), nn.MaxPool2d(2, 2), nn.Conv2d(256, 512, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, 3, 1, 1), nn.ReLU(inplace=True), nn.MaxPool2d(2, 2), nn.Conv2d(256, 512, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, 3, 1, 1), nn.ReLU(inplace=True), nn.Conv2d(512, 512, 3, 1, 1), nn.ReLU(inplace=True), nn.MaxPool2d(2, 2), ) self.avgpool = nn.AdaptiveAvgPool2d(output_size=(7,7)) self.classifier = nn.Sequential( nn.Linear(num_hidden,4096), nn.ReLU(), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(), nn.Linear(4096,out_channels) ) def forward(self,x): x = self.features(x) x = self.avgpool(x) x = torch.flatten(x,1) x = self.classifer(x) return x vgg = VGG16() print(vgg(3,1000,50288))
看起来应该是在类VGG16的__init__函数中定义self的时候出错了,可能是因为super(VGG16, self).__init__()前面多了一个空格,应该是super(VGG16,self).__init__(),应该把空格去掉就可以了。
阅读全文