R语言rm(list=ls()) k <- 1000 n <- 100 alp <- 0.05 beta1hat <- numeric(k) beta2hat <- numeric(k) for(i in 1:k){ x1<- rnorm(n,0,0.5) x2<- rbinom(n,1,prob=0.5) eb <- rnorm(n,0,1) y <- 2*x1+3*x2 beta1hat[i]<- solve(t(x1)%*%x1)%*%t(x1)%*%y beta2hat[i]<- solve(t(x2)%*%x2)%*%t(x2)%*%y } sigma1 <- sqrt(var(beta1hat)) sigma2 <- sqrt(var(beta2hat)) hlo1 <- vector(beta1hat-sigma1*solve(t(x1)%*%x1)*qnorm(0.025)) hup1 <- vector(beta1hat+sigma1*solve(t(x1)%*%x1)*qnorm(0.025)) hlo2 <- vector(beta2hat-sigma2*solve(t(x2)%*%x2)*qnorm(0.025)) hup2 <- vector(beta2hat+sigma2*solve(t(x2)%*%x2)*qnorm(0.025))报错
时间: 2023-12-17 09:05:46 浏览: 77
AndroidLua手册Beta_1_0-190411203518.alp
根据您提供的代码,我发现以下问题:
1. 在for循环中,您计算了beta1hat和beta2hat,但是没有指定它们的初始化值。您需要在循环之前使用`beta1hat <- numeric(k)`和`beta2hat <- numeric(k)`进行初始化。
2. 在计算置信区间时,您使用了vector函数,但是vector函数只能用于创建向量,不能用于更新向量。您需要使用c函数(concatenate函数)来更新向量,例如:
```
hlo1 <- beta1hat-sigma1*solve(t(x1)%*%x1)*qnorm(0.025)
hlo1 <- c(hlo1, rep(0, k-length(hlo1)))
hup1 <- beta1hat+sigma1*solve(t(x1)%*%x1)*qnorm(0.025)
hup1 <- c(hup1, rep(0, k-length(hup1)))
hlo2 <- beta2hat-sigma2*solve(t(x2)%*%x2)*qnorm(0.025)
hlo2 <- c(hlo2, rep(0, k-length(hlo2)))
hup2 <- beta2hat+sigma2*solve(t(x2)%*%x2)*qnorm(0.025)
hup2 <- c(hup2, rep(0, k-length(hup2)))
```
3. 在计算beta1hat和beta2hat时,您使用了矩阵乘法运算符`%*%`,但是您需要将x1、x2和y转换为矩阵或列向量。您可以使用`as.matrix()`或`as.vector()`函数进行转换,例如:
```
x1<- as.matrix(rnorm(n,0,0.5))
x2<- as.matrix(rbinom(n,1,prob=0.5))
y <- as.matrix(2*x1+3*x2)
beta1hat[i]<- solve(t(x1)%*%x1)%*%t(x1)%*%y
beta2hat[i]<- solve(t(x2)%*%x2)%*%t(x2)%*%y
```
综上所述,以下是修改后的代码:
```
rm(list=ls())
k <- 1000
n <- 100
alp <- 0.05
beta1hat <- numeric(k)
beta2hat <- numeric(k)
for(i in 1:k){
x1<- as.matrix(rnorm(n,0,0.5))
x2<- as.matrix(rbinom(n,1,prob=0.5))
eb <- rnorm(n,0,1)
y <- as.matrix(2*x1+3*x2)
beta1hat[i]<- solve(t(x1)%*%x1)%*%t(x1)%*%y
beta2hat[i]<- solve(t(x2)%*%x2)%*%t(x2)%*%y
}
sigma1 <- sqrt(var(beta1hat))
sigma2 <- sqrt(var(beta2hat))
hlo1 <- beta1hat-sigma1*solve(t(x1)%*%x1)*qnorm(0.025)
hlo1 <- c(hlo1, rep(0, k-length(hlo1)))
hup1 <- beta1hat+sigma1*solve(t(x1)%*%x1)*qnorm(0.025)
hup1 <- c(hup1, rep(0, k-length(hup1)))
hlo2 <- beta2hat-sigma2*solve(t(x2)%*%x2)*qnorm(0.025)
hlo2 <- c(hlo2, rep(0, k-length(hlo2)))
hup2 <- beta2hat+sigma2*solve(t(x2)%*%x2)*qnorm(0.025)
hup2 <- c(hup2, rep(0, k-length(hup2)))
```
阅读全文