k <- 1000 n <- 200 alp <- 2 lamb <- 1 x <- numeric(k) alphat <- numeric(k) lambhat <- numeric(k) set.seed(123) library(bootstrap) for(i in 1:k){ x[i] <- rgamma(n,alp,lamb) alphat[i] <- lambhat[i] <- (n*alp)/x[i] }

时间: 2024-03-29 13:36:14 浏览: 111
这段代码看起来是在使用自助法(bootstrap)来估计参数 alp 和 lamb。具体来说,这个程序会生成 1000 组大小为 200 的随机样本 x,这些样本服从参数为 alp 和 lamb 的 gamma 分布。然后,对于每一组样本,程序会用样本均值来估计参数 alp 和 lamb,最终得到两个长为 1000 的向量 alphat 和 lambhat,分别存储了 1000 组估计值。 需要注意的是,这里使用了 set.seed(123) 来设置随机数种子,这样可以使得程序每次运行生成的随机数序列都相同,方便验证结果的正确性。另外,这里调用了 bootstrap 包来实现自助法的计算。
相关问题

rm(list=ls()) k <- 1000 n <- 200 alp <- 2 lamb <- 1 set.seed(123) library(bootstrap) for(i in 1:k){ x <- rgamma(n,alp,lamb) } #####bootstrap##### B <- 2000 boot <-matrix(0,nrow=n,ncol=2) for (b in 1:B) { id <- sample(1:n, size = n, replace = TRUE) boot[b,] <- c(x[alp[id]], x[lamb[id]]) }报错

这段代码的问题在于,在进行bootstrap时,对变量x进行了索引,但是x是在for循环中定义的,因此在循环结束后x只有最后一次迭代的结果,而不是k次迭代的结果。如果要对每次迭代的结果进行bootstrap,需要将x定义为一个长度为k的向量,并在每次迭代中将结果存储到向量中。修改后的代码如下: ``` rm(list=ls()) k <- 1000 n <- 200 alp <- 2 lamb <- 1 set.seed(123) library(bootstrap) x <- numeric(k) # 定义x为长度为k的向量 for(i in 1:k){ x[i] <- rgamma(n,alp,lamb) # 将每次迭代的结果存储到向量中 } #####bootstrap##### B <- 2000 boot <-matrix(0,nrow=n,ncol=2) for (b in 1:B) { id <- sample(1:n, size = n, replace = TRUE) boot[b,] <- c(x[alp[id]], x[lamb[id]]) } ``` 注意,这只是解决了代码中的错误,但是无法确定这段代码的实际用途和正确性,因此可能需要根据具体情况进行修改。

k <- 1000 n <- 100 beta0 <- c(1,1) #真实值 alp <- 0.05 #显著性水平 beta1hat <- matrix(nrow = k,ncol = 2) beta2hat <- matrix(nrow = k,ncol = 2) hsig <- numeric(k) hus <- matrix(nrow = k,ncol = 2) hls <- matrix(nrow = k,ncol = 2) y <- 2*x1+3*x2 for(i in 1:k){ x1 <- rnorm(n,0,0.5) x2 <- rbinom(n,1,prob=0.5) eb <- rnorm(n,0,1) hy <- X1%*%beta1hat +X2%*%beta2hat+eb beta1hat[i] <- solve(t(x1)%*%x1)%*%t(x1)%*%hy beta2hat[i] <- solve(t(x2)%*%x2)%*%t(x2)%*%hy }

这段代码是一个模拟线性回归的过程。其中,通过生成随机数来模拟自变量和误差项,然后利用最小二乘法来估计回归系数。其中,beta1hat和beta2hat是两个回归系数的估计值,hsig、hus和hls则是用来计算回归系数的标准误、上置信限和下置信限的值。最后,y是根据真实值和估计出来的回归系数计算出来的因变量的值。
阅读全文

相关推荐

请解释一下如下代码b=1; % 系统参数b固定 min_a=0; % 参数a最小 div_a=0.01; % 参数a迭代步长 max_a=1; % 参数a最大 M=(max_a-min_a)/div_a+1; % 参数a迭代次数 alp=1.8; snrdb=50; snr=10^(snrdb/10); load EPSI1; sig1=EPSI1(12800+1:12800+1280); % 取第101至110个周期的EP信号 NN=1000; % 重采样率 s1=interp(sig1(1:128*3),NN); N=length(s1); % 随机微分方程数值解的点数 tt=1/NN; % 随机微分方程数值解的时间步长 MM=2; % 独立运行的次数 mm=1; d=zeros(MM,1); a_est=zeros(MM,1); for index=1:MM % v0=randn(N,1); gamma=1; p=alp; v1=(alpha(N,alp,0,gamma,0))'; s1=gamma*sqrt(snr)*s1/std(s1); % 用噪声强度(分散系数为1)和信噪比来确定信号大小 x1=s1+v1; % x1=atan(x1); % x1=abs(x1).^(alp-1).*sign(x1); %---algorithm--- y1=zeros(N,M); xx1=zeros(N/NN,1); yy1=zeros(N/NN,M); c_coe1=zeros(M,1); m=1; for a=min_a:div_a:max_a; y1(1,1)=1; for n=1:N-1 y1(n+1,m)=y1(n,m)+tt*(a*y1(n,m)-b*y1(n,m)^3+x1(n)); end xx1=downsample(x1,NN); yy1(:,m)=downsample(y1(:,m),NN); ss1=downsample(s1,NN); xx1_yy1(m)=(1/length(xx1))*sum(xx1.*(abs(yy1(:,m)).^(p-1).*sign(yy1(:,m)))); % 计算输入输出的对称共变系数c_cor yy1_xx1(m)=(1/length(yy1(:,m)))*sum(yy1(:,m).*(abs(xx1).^(p-1).*sign(xx1))); xx1_xx1(m)=(1/length(xx1))*sum(xx1.*(abs(xx1).^(p-1).*sign(xx1))); yy1_yy1(m)=(1/length(yy1(:,m)))*sum(yy1(:,m).*(abs(yy1(:,m)).^(p-1).*sign(yy1(:,m)))); c_coe1(m)=(xx1_yy1(m)*yy1_xx1(m))/(xx1_xx1(m)*yy1_yy1(m)); % 对称共变系数 m=m+1; end [val1,loc1]=max(c_coe1);% 确定最佳a值a_est、 a_est(mm)=(loc1-1)*div_a+min_a; cc_ss1yy1=xcov(ss1,abs(yy1(:,loc1)).^(p-1).*sign(yy1(:,loc1))); % 了解随机共振系统的延时d,应该a相同时看延时是否相同 [val,loc]=max(cc_ss1yy1); d(mm)=length(ss1)-loc; mm=mm+1; end a_est d dd=mean(d) figure(1) % 观察最佳a值a_est时的输入xx1、输出yy1(:,loc1) subplot(411),plot(ss1) subplot(412),plot(xx1) loc=(a_est(mm-1)-min_a)/div_a+1 % 众数? subplot(413),plot(yy1(:,loc)) a=min_a:div_a:max_a; subplot(414),plot(a,c_coe1,'*')

最新推荐

recommend-type

安装INFORMIX客户端软件以及使用

1. 下载安装包:用户可以通过百度搜索「INFORMIX SDK」下载安装包,选择对应的操作系统版本,例如 Windows 或 Linux。 2. 安装步骤:下载完成后,用户可以按照以下步骤安装 INFORMIX 客户端软件: `tnmsapp2:/opt/...
recommend-type

zip4j.jar包下载,版本为 2.11.5

zip4j.jar包下载,版本为 2.11.5
recommend-type

基于node.js完成登录

基于node.js完成登录
recommend-type

aapt_v0.2-eng.ibotpeaches.20151011.225425_win.tar.cab

aapt_v0.2-eng.ibotpeaches.20151011.225425_win.tar.cab
recommend-type

(2368806)CCNA中文版PPT

**CCNA(思科认证网络助理工程师)是网络技术领域中的一个基础认证,它涵盖了网络基础知识、IP编址、路由与交换技术等多个方面。以下是对CCNA中文版PPT中可能涉及的知识点的详细说明:** ### 第1章 高级IP编址 #### 1.1 IPv4地址结构 - IPv4地址由32位二进制组成,通常分为四段,每段8位,用点分十进制表示。 - 子网掩码用于定义网络部分和主机部分,如255.255.255.0。 - IP地址的分类:A类、B类、C类、D类(多播)和E类(保留)。 #### 1.2 子网划分 - 子网划分用于优化IP地址的分配,通过借用主机位创建更多的子网。 - 子网计算涉及掩码位数选择,以及如何确定可用的主机数和子网数。 - CIDR(无类别域间路由)表示法用于更有效地管理IP地址空间。 #### 1.3 私有IP地址 - 为了节省公网IP地址,私有IP地址被用于内部网络,如10.0.0.0/8,172.16.0.0/12,192.168.0.0/16。 #### 1.4 广播地址 - 每个网络都有一个特定的广播地址,所有数据包都会发送到这个地址以达到同一网络内的所有设备。
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"