k <- 1000 n <- 200 alp <- 2 lamb <- 1 x <- numeric(k) alphat <- numeric(k) lambhat <- numeric(k) set.seed(123) library(bootstrap) for(i in 1:k){ x[i] <- rgamma(n,alp,lamb) alphat[i] <- lambhat[i] <- (n*alp)/x[i] }
时间: 2024-03-29 13:36:14 浏览: 111
这段代码看起来是在使用自助法(bootstrap)来估计参数 alp 和 lamb。具体来说,这个程序会生成 1000 组大小为 200 的随机样本 x,这些样本服从参数为 alp 和 lamb 的 gamma 分布。然后,对于每一组样本,程序会用样本均值来估计参数 alp 和 lamb,最终得到两个长为 1000 的向量 alphat 和 lambhat,分别存储了 1000 组估计值。
需要注意的是,这里使用了 set.seed(123) 来设置随机数种子,这样可以使得程序每次运行生成的随机数序列都相同,方便验证结果的正确性。另外,这里调用了 bootstrap 包来实现自助法的计算。
相关问题
rm(list=ls()) k <- 1000 n <- 200 alp <- 2 lamb <- 1 set.seed(123) library(bootstrap) for(i in 1:k){ x <- rgamma(n,alp,lamb) } #####bootstrap##### B <- 2000 boot <-matrix(0,nrow=n,ncol=2) for (b in 1:B) { id <- sample(1:n, size = n, replace = TRUE) boot[b,] <- c(x[alp[id]], x[lamb[id]]) }报错
这段代码的问题在于,在进行bootstrap时,对变量x进行了索引,但是x是在for循环中定义的,因此在循环结束后x只有最后一次迭代的结果,而不是k次迭代的结果。如果要对每次迭代的结果进行bootstrap,需要将x定义为一个长度为k的向量,并在每次迭代中将结果存储到向量中。修改后的代码如下:
```
rm(list=ls())
k <- 1000
n <- 200
alp <- 2
lamb <- 1
set.seed(123)
library(bootstrap)
x <- numeric(k) # 定义x为长度为k的向量
for(i in 1:k){
x[i] <- rgamma(n,alp,lamb) # 将每次迭代的结果存储到向量中
}
#####bootstrap#####
B <- 2000
boot <-matrix(0,nrow=n,ncol=2)
for (b in 1:B) {
id <- sample(1:n, size = n, replace = TRUE)
boot[b,] <- c(x[alp[id]], x[lamb[id]])
}
```
注意,这只是解决了代码中的错误,但是无法确定这段代码的实际用途和正确性,因此可能需要根据具体情况进行修改。
k <- 1000 n <- 100 beta0 <- c(1,1) #真实值 alp <- 0.05 #显著性水平 beta1hat <- matrix(nrow = k,ncol = 2) beta2hat <- matrix(nrow = k,ncol = 2) hsig <- numeric(k) hus <- matrix(nrow = k,ncol = 2) hls <- matrix(nrow = k,ncol = 2) y <- 2*x1+3*x2 for(i in 1:k){ x1 <- rnorm(n,0,0.5) x2 <- rbinom(n,1,prob=0.5) eb <- rnorm(n,0,1) hy <- X1%*%beta1hat +X2%*%beta2hat+eb beta1hat[i] <- solve(t(x1)%*%x1)%*%t(x1)%*%hy beta2hat[i] <- solve(t(x2)%*%x2)%*%t(x2)%*%hy }
这段代码是一个模拟线性回归的过程。其中,通过生成随机数来模拟自变量和误差项,然后利用最小二乘法来估计回归系数。其中,beta1hat和beta2hat是两个回归系数的估计值,hsig、hus和hls则是用来计算回归系数的标准误、上置信限和下置信限的值。最后,y是根据真实值和估计出来的回归系数计算出来的因变量的值。
阅读全文