已知逆圆弧的起点终点及半径大小,用C++代码求出该逆圆弧的两个圆心
时间: 2024-03-27 20:40:15 浏览: 63
已知起点 终点 半径 优弧劣弧 顺逆圆求圆心坐标
5星 · 资源好评率100%
对于逆圆弧,我们可以先将其转化为对应的圆弧,然后再根据圆弧的方法求出两个圆心。具体的做法是,将逆圆弧的起点和终点分别连接圆心,得到两条直径,然后求出这两条直径的交点,即为圆弧的中心点,再根据圆弧的方法求出两个圆心。
代码实现如下:
```c++
#include <iostream>
#include <cmath>
using namespace std;
const double PI = acos(-1.0);
int main() {
double x1, y1, x2, y2, r;
cin >> x1 >> y1 >> x2 >> y2 >> r;
// 求出逆圆弧的圆心坐标
double xm = (x1 + x2) / 2, ym = (y1 + y2) / 2;
double d = sqrt(r * r - pow(x1 - xm, 2) - pow(y1 - ym, 2));
double A = atan2(y1 - ym, x1 - xm);
double B = acos(d / r);
double C = A + B;
double D = A - B;
double xc1 = xm + r * cos(C), yc1 = ym + r * sin(C);
double xc2 = xm + r * cos(D), yc2 = ym + r * sin(D);
// 求出圆弧的中心点坐标
double xa = x1 - xc1, ya = y1 - yc1;
double xb = x2 - xc1, yb = y2 - yc1;
double cos_theta = (xa * xb + ya * yb) / (sqrt(xa * xa + ya * ya) * sqrt(xb * xb + yb * yb));
double sin_theta = sqrt(1 - cos_theta * cos_theta);
double L = r * acos(cos_theta);
double xm1 = xc1 + (xa + xb) / 2, ym1 = yc1 + (ya + yb) / 2;
double u = (xb - xa) / L, v = (ya - yb) / L;
double xc = xm1 + u * L / 2, yc = ym1 + v * L / 2;
// 求出圆心坐标
double d1 = sqrt((x1 - xc) * (x1 - xc) + (y1 - yc) * (y1 - yc));
double d2 = sqrt((x2 - xc) * (x2 - xc) + (y2 - yc) * (y2 - yc));
if (abs(d1 - r) < 1e-6) cout << x1 << " " << y1 << " " << xc << " " << yc << endl;
else if (abs(d2 - r) < 1e-6) cout << x2 << " " << y2 << " " << xc << " " << yc << endl;
else cout << "No solution" << endl;
return 0;
}
```
阅读全文