x = F.threshold(-x, -1, -1)

时间: 2023-09-14 20:05:54 浏览: 37
这行代码使用了 PyTorch 中的阈值函数,将输入张量 x 中小于 -1 的值设置为 -1,大于等于 -1 的值保持不变。具体而言,函数的定义如下: ``` torch.threshold(input, threshold, value, inplace=False) -> Tensor ``` 其中, - input:输入张量 - threshold:阈值 - value:小于阈值的元素设置为该值 - inplace:是否原地操作,即是否把操作结果直接存储到输入张量中。默认为 False。 因此,该行代码的作用是将 x 中小于 -1 的元素替换为 -1。
相关问题

public Point2d RefineSubPixel(Mat image, Point2d lower, Point2d upper) { // 提取感兴趣区域 Rect roiRect = new Rect((int)lower.X, (int)lower.Y, (int)(upper.X - lower.X), (int)(upper.Y - lower.Y)); Mat roi = new Mat(image, roiRect); // 初始化初始点 Point2d refinedPoint = new Point2d(roi.Cols / 2.0, roi.Rows / 2.0); // 定义优化终止标准 var termCriteria = new TermCriteria(CriteriaTypes.MaxIter | CriteriaTypes.Eps, 20, 0.03); // 执行优化迭代 if (roi.Width > 1 && roi.Height > 1) { // 预处理 var grayRoi = new Mat(); Cv2.PyrMeanShiftFiltering(roi, roi, 2, 2); Cv2.CvtColor(roi, grayRoi, ColorConversionCodes.BGR2GRAY); Cv2.Threshold(grayRoi, grayRoi, 0, 255, ThresholdTypes.Binary | ThresholdTypes.Otsu); // 迭代更新点坐标 var delta = new Point2d(); var point = new Point2d(refinedPoint.X, refinedPoint.Y); var bestPoint = new Point2d(refinedPoint.X, refinedPoint.Y); var width = image.Cols; var height = image.Rows; var targetGray = grayRoi.At<byte>((int)point.Y, (int)point.X); var minError = double.MaxValue; var precision = 1e-6; for (int i = 0; i < termCriteria.MaxCount; i++) { int x = (int)Math.Round(point.X); int y = (int)Math.Round(point.Y); if (x <= 0 || y <= 0 || x >= grayRoi.Cols - 1 || y >= grayRoi.Rows - 1) { break; } // 计算当前点周围的梯度信息 var derivX = (grayRoi.At<byte>(y, x + 1) - grayRoi.At<byte>(y, x - 1)) / 2.0; var derivY = (grayRoi.At<byte>(y + 1, x) - grayRoi.At<byte>(y - 1, x)) / 2.0; var hessian = new Mat(2, 2, MatType.CV_64F); hessian.Set<double>(0, 0, grayRoi.At<byte>(y, x + 1) + grayRoi.At<byte>(y, x - 1) - 2 * grayRoi.At<byte>(y, x)); hessian.Set<double>(0, 1, (grayRoi.At<byte>(y + 1, x + 1) - grayRoi.At<byte>(y + 1, x - 1) - grayRoi.At<byte>(y - 1, x + 1) + grayRoi.At<byte>(y - 1, x - 1)) / 4.0); hessian.Set<double>(1, 0, hessian.At<double>(0, 1)); hessian.Set<double>(1, 1, grayRoi.At<byte请完善代码

>(y + 1, x) + grayRoi.At<byte>(y - 1, x) - 2 * grayRoi.At<byte>(y, x)); // 求解线性方程组,更新点坐标 var deltaMat = new Mat(2, 1, MatType.CV_64F); deltaMat.Set<double>(0, 0, derivX); deltaMat.Set<double>(1, 0, derivY); var hessianInv = hessian.Inv(); var deltaPoint = hessianInv * deltaMat; delta.X = deltaPoint.At<double>(0, 0); delta.Y = deltaPoint.At<double>(1, 0); point -= delta; point.X = Math.Max(Math.Min(point.X, roi.Cols - 1), 0); point.Y = Math.Max(Math.Min(point.Y, roi.Rows - 1), 0); // 判断是否收敛 var currentGray = grayRoi.At<byte>((int)point.Y, (int)point.X); if (Math.Abs(currentGray - targetGray) < minError) { minError = Math.Abs(currentGray - targetGray); bestPoint = new Point2d(point.X, point.Y); } if (Math.Sqrt(delta.X * delta.X + delta.Y * delta.Y) < precision) { break; } } refinedPoint = bestPoint + new Point2d(lower.X, lower.Y); } return refinedPoint; } 这段代码是用于对图像中某个区域内的点进行亚像素级别的精确定位。具体实现过程是通过迭代优化,计算当前点周围的梯度信息和Hessian矩阵,然后求解线性方程组并更新点坐标,直到达到优化终止标准为止。 其中,先通过PyrMeanShiftFiltering函数对感兴趣区域进行预处理,然后再用CvtColor函数将其转换为灰度图像,接着用Threshold函数对其进行二值化处理。在迭代过程中,还需要判断当前点是否在图像边界内,以及判断是否达到优化终止标准。最后返回经过优化后的精确点坐标。

###function approximation f(x)=sin(x) ###2018.08.14 ###激活函数用的是sigmoid import numpy as np import math import matplotlib.pyplot as plt x = np.linspace(-3, 3, 600) # print(x) # print(x[1]) x_size = x.size y = np.zeros((x_size, 1)) # print(y.size) for i in range(x_size): y[i] = math.sin(2*math.pi*0.4*x[i])+ math.sin(2*math.pi*0.1*x[i]) + math.sin(2*math.pi*0.9*x[i]) # print(y) hidesize = 10 W1 = np.random.random((hidesize, 1)) # 输入层与隐层之间的权重 B1 = np.random.random((hidesize, 1)) # 隐含层神经元的阈值 W2 = np.random.random((1, hidesize)) # 隐含层与输出层之间的权重 B2 = np.random.random((1, 1)) # 输出层神经元的阈值 threshold = 0.005 max_steps = 1001 def sigmoid(x_): y_ = 1 / (1 + math.exp(-x_)) return y_ E = np.zeros((max_steps, 1)) # 误差随迭代次数的变化 Y = np.zeros((x_size, 1)) # 模型的输出结果 for k in range(max_steps): temp = 0 for i in range(x_size): hide_in = np.dot(x[i], W1) - B1 # 隐含层输入数据 # print(x[i]) hide_out = np.zeros((hidesize, 1)) # 隐含层的输出数据 for j in range(hidesize): # print("第{}个的值是{}".format(j,hide_in[j])) # print(j,sigmoid(j)) hide_out[j] = sigmoid(hide_in[j]) # print("第{}个的值是{}".format(j, hide_out[j])) # print(hide_out[3]) y_out = np.dot(W2, hide_out) - B2 # 模型输出 # print(y_out) Y[i] = y_out # print(i,Y[i]) e = y_out - y[i] # 模型输出减去实际结果。得出误差 ##反馈,修改参数 dB2 = -1 * threshold * e dW2 = e * threshold * np.transpose(hide_out) dB1 = np.zeros((hidesize, 1)) for j in range(hidesize): dB1[j] = np.dot(np.dot(W2[0][j], sigmoid(hide_in[j])), (1 - sigmoid(hide_in[j])) * (-1) * e * threshold) dW1 = np.zeros((hidesize, 1)) for j in range(hidesize): dW1[j] = np.dot(np.dot(W2[0][j], sigmoid(hide_in[j])), (1 - sigmoid(hide_in[j])) * x[i] * e * threshold) W1 = W1 - dW1 B1 = B1 - dB1 W2 = W2 - dW2 B2 = B2 - dB2 temp = temp + abs(e) E[k] = temp if k % 100 == 0: print(k) plt.figure() plt.plot(x, Y) plt.plot(x, Y, color='red', linestyle='--') plt.show()这个程序如何每迭代100次就输出一次图片

要每迭代100次输出一次图片,你需要在代码中添加相应的逻辑。以下是修改后的代码示例: ```python import numpy as np import math import matplotlib.pyplot as plt x = np.linspace(-3, 3, 600) x_size = x.size y = np.zeros((x_size, 1)) for i in range(x_size): y[i] = math.sin(2*math.pi*0.4*x[i]) + math.sin(2*math.pi*0.1*x[i]) + math.sin(2*math.pi*0.9*x[i]) hidesize = 10 W1 = np.random.random((hidesize, 1)) B1 = np.random.random((hidesize, 1)) W2 = np.random.random((1, hidesize)) B2 = np.random.random((1, 1)) threshold = 0.005 max_steps = 1001 def sigmoid(x_): y_ = 1 / (1 + math.exp(-x_)) return y_ E = np.zeros((max_steps, 1)) Y = np.zeros((x_size, 1)) for k in range(max_steps): temp = 0 for i in range(x_size): hide_in = np.dot(x[i], W1) - B1 hide_out = np.zeros((hidesize, 1)) for j in range(hidesize): hide_out[j] = sigmoid(hide_in[j]) y_out = np.dot(W2, hide_out) - B2 Y[i] = y_out e = y_out - y[i] dB2 = -1 * threshold * e dW2 = e * threshold * np.transpose(hide_out) dB1 = np.zeros((hidesize, 1)) for j in range(hidesize): dB1[j] = np.dot(np.dot(W2[0][j], sigmoid(hide_in[j])), (1 - sigmoid(hide_in[j])) * (-1) * e * threshold) dW1 = np.zeros((hidesize, 1)) for j in range(hidesize): dW1[j] = np.dot(np.dot(W2[0][j], sigmoid(hide_in[j])), (1 - sigmoid(hide_in[j])) * x[i] * e * threshold) W1 = W1 - dW1 B1 = B1 - dB1 W2 = W2 - dW2 B2 = B2 - dB2 temp = temp + abs(e) E[k] = temp if k % 100 == 0: plt.figure() plt.plot(x, Y) plt.plot(x, Y, color='red', linestyle='--') plt.savefig(f'iteration_{k}.png') plt.close() plt.figure() plt.plot(x, Y) plt.plot(x, Y, color='red', linestyle='--') plt.show() ``` 在上述示例中,我添加了一个条件判断语句`if k % 100 == 0`来判断是否达到每100次迭代的条件。如果满足条件,则在该迭代结束后绘制并保存图片,文件名为`iteration_k.png`,其中`k`表示当前迭代次数。 请根据你的具体需求和编程环境进行相应的调整。

相关推荐

import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt # 加载 iris 数据 iris = load_iris() # 只选取两个特征和两个类别进行二分类 X = iris.data[(iris.target==0)|(iris.target==1), :2] y = iris.target[(iris.target==0)|(iris.target==1)] # 将标签转化为 0 和 1 y[y==0] = -1 # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 实现逻辑回归算法 class LogisticRegression: def __init__(self, lr=0.01, num_iter=100000, fit_intercept=True, verbose=False): self.lr = lr self.num_iter = num_iter self.fit_intercept = fit_intercept self.verbose = verbose def __add_intercept(self, X): intercept = np.ones((X.shape[0], 1)) return np.concatenate((intercept, X), axis=1) def __sigmoid(self, z): return 1 / (1 + np.exp(-z)) def __loss(self, h, y): return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean() def fit(self, X, y): if self.fit_intercept: X = self.__add_intercept(X) # 初始化参数 self.theta = np.zeros(X.shape[1]) for i in range(self.num_iter): # 计算梯度 z = np.dot(X, self.theta) h = self.__sigmoid(z) gradient = np.dot(X.T, (h - y)) / y.size # 更新参数 self.theta -= self.lr * gradient # 打印损失函数 if self.verbose and i % 10000 == 0: z = np.dot(X, self.theta) h = self.__sigmoid(z) loss = self.__loss(h, y) print(f"Loss: {loss} \t") def predict_prob(self, X): if self.fit_intercept: X = self.__add_intercept(X) return self.__sigmoid(np.dot(X, self.theta)) def predict(self, X, threshold=0.5): return self.predict_prob(X) >= threshold # 训练模型 model = LogisticRegressio

分析这个代码class OhemCrossEntropy(nn.Module): def __init__(self, ignore_label=-1, thres=0.7, min_kept=100000, weight=None): super(OhemCrossEntropy, self).__init__() self.thresh = thres self.min_kept = max(1, min_kept) self.ignore_label = ignore_label self.criterion = nn.CrossEntropyLoss( weight=weight, ignore_index=ignore_label, reduction='none' ) def _ce_forward(self, score, target): ph, pw = score.size(2), score.size(3) h, w = target.size(1), target.size(2) if ph != h or pw != w: score = F.interpolate(input=score, size=( h, w), mode='bilinear', align_corners=config.MODEL.ALIGN_CORNERS) loss = self.criterion(score, target) return loss def _ohem_forward(self, score, target, **kwargs): ph, pw = score.size(2), score.size(3) h, w = target.size(1), target.size(2) if ph != h or pw != w: score = F.interpolate(input=score, size=( h, w), mode='bilinear', align_corners=config.MODEL.ALIGN_CORNERS) pred = F.softmax(score, dim=1) pixel_losses = self.criterion(score, target).contiguous().view(-1) mask = target.contiguous().view(-1) != self.ignore_label tmp_target = target.clone() tmp_target[tmp_target == self.ignore_label] = 0 pred = pred.gather(1, tmp_target.unsqueeze(1)) pred, ind = pred.contiguous().view(-1,)[mask].contiguous().sort() min_value = pred[min(self.min_kept, pred.numel() - 1)] threshold = max(min_value, self.thresh) pixel_losses = pixel_losses[mask][ind] pixel_losses = pixel_losses[pred < threshold] return pixel_losses.mean() def forward(self, score, target): if config.MODEL.NUM_OUTPUTS == 1: score = [score] weights = config.LOSS.BALANCE_WEIGHTS assert len(weights) == len(score) functions = [self._ce_forward] * \ (len(weights) - 1) + [self._ohem_forward] return sum([ w * func(x, target) for (w, x, func) in zip(weights, score, functions) ])

用Python帮我写一个程序:后缀为csv的波士顿房价数据文件存放在文件夹路径csv_file_dir中。按下列考试要求进行数据处理: 1.读取数据文件中的所有数据为DataFrame格式,保留第0行的表头作为列名。获得样本列名为y_target列赋值给y,除此之外的13列赋值给X; 2.使用sklearn中的sklearn.feature_selection.VarianceThreshold定义基于方差的筛选模型,方差阈值threshold设置为10,其他参数保持默认值; 3.使用fit_transform训练2定义的筛选模型返回选出的新的特征X_new; 4.将第3步得到的特征数据X_new与y按列合并处理成新的DataFrame,按student_answer_path生成csv文件并保存,编码方式采用‘UTF-8’,所有值保留3位小数,小数点后尾部的0无需保存,如:0.200直接保存成0.2,不保留列名及行索引。 提示 df = pd.read_csv(filepath,header) # filepath相对路径,header默认为0,header=None时,表头读为表的信息不做列名 sklearn.feature_selection.VarianceThreshold(threshold) # 定义筛选模型 fit_transform(X, y) # 训练模型 np.concatenate((arr1, arr2), axis=1) # ndarray 拼接 np.round(x, 3) # 对x保留3位小数 df.to_csv(savepath, index=False, encoding='UTF-8') # index参数表示保存为.csv文件是否保留index 输出示例 0.00632,18.0,2.31,65.2,1.0,296.0,396.9,4.98,24.0 0.02731,0.0,7.07,78.9,2.0,242.0,396.9,9.14,21.6 0.02729,0.0,7.07,61.1,2.0,242.0,392.83,4.03,34.7;import os os.chdir(os.path.dirname(__file__)) import pandas as pd import numpy as np from sklearn.feature_selection import VarianceThreshold csv_file_dir='./data' student_answer_path='./csv_answer.csv'

请详细解释下这段代码void FaceTracker::OnNewFaceData( const std::vector<human_sensing::CrosFace>& faces) { // Given |f1| and |f2| from two different (usually consecutive) frames, treat // the two rectangles as the same face if their position delta is less than // kFaceDistanceThresholdSquare. // // This is just a heuristic and is not accurate in some corner cases, but we // don't have face tracking. auto is_same_face = [&](const Rect<float>& f1, const Rect<float>& f2) -> bool { const float center_f1_x = f1.left + f1.width / 2; const float center_f1_y = f1.top + f1.height / 2; const float center_f2_x = f2.left + f2.width / 2; const float center_f2_y = f2.top + f2.height / 2; constexpr float kFaceDistanceThresholdSquare = 0.1 * 0.1; const float dist_square = std::pow(center_f1_x - center_f2_x, 2.0f) + std::pow(center_f1_y - center_f2_y, 2.0f); return dist_square < kFaceDistanceThresholdSquare; }; for (const auto& f : faces) { FaceState s = { .normalized_bounding_box = Rect<float>( f.bounding_box.x1 / options_.active_array_dimension.width, f.bounding_box.y1 / options_.active_array_dimension.height, (f.bounding_box.x2 - f.bounding_box.x1) / options_.active_array_dimension.width, (f.bounding_box.y2 - f.bounding_box.y1) / options_.active_array_dimension.height), .last_detected_ticks = base::TimeTicks::Now(), .has_attention = std::fabs(f.pan_angle) < options_.pan_angle_range}; bool found_matching_face = false; for (auto& known_face : faces_) { if (is_same_face(s.normalized_bounding_box, known_face.normalized_bounding_box)) { found_matching_face = true; if (!s.has_attention) { // If the face isn't looking at the camera, reset the timer. s.first_detected_ticks = base::TimeTicks::Max(); } else if (!known_face.has_attention && s.has_attention) { // If the face starts looking at the camera, start the timer. s.first_detected_ticks = base::TimeTicks::Now(); } else { s.first_detected_ticks = known_face.first_detected_ticks; } known_face = s; break; } } if (!found_matching_face) { s.first_detected_ticks = base::TimeTicks::Now(); faces_.push_back(s); } } // Flush expired face states. for (auto it = faces_.begin(); it != faces_.end();) { if (ElapsedTimeMs(it->last_detected_ticks) > options_.face_phase_out_threshold_ms) { it = faces_.erase(it); } else { ++it; } } }

修改和补充下列代码得到十折交叉验证的平均auc值和平均aoc曲线,平均分类报告以及平均混淆矩阵 min_max_scaler = MinMaxScaler() X_train1, X_test1 = x[train_id], x[test_id] y_train1, y_test1 = y[train_id], y[test_id] # apply the same scaler to both sets of data X_train1 = min_max_scaler.fit_transform(X_train1) X_test1 = min_max_scaler.transform(X_test1) X_train1 = np.array(X_train1) X_test1 = np.array(X_test1) config = get_config() tree = gcForest(config) tree.fit(X_train1, y_train1) y_pred11 = tree.predict(X_test1) y_pred1.append(y_pred11 X_train.append(X_train1) X_test.append(X_test1) y_test.append(y_test1) y_train.append(y_train1) X_train_fuzzy1, X_test_fuzzy1 = X_fuzzy[train_id], X_fuzzy[test_id] y_train_fuzzy1, y_test_fuzzy1 = y_sampled[train_id], y_sampled[test_id] X_train_fuzzy1 = min_max_scaler.fit_transform(X_train_fuzzy1) X_test_fuzzy1 = min_max_scaler.transform(X_test_fuzzy1) X_train_fuzzy1 = np.array(X_train_fuzzy1) X_test_fuzzy1 = np.array(X_test_fuzzy1) config = get_config() tree = gcForest(config) tree.fit(X_train_fuzzy1, y_train_fuzzy1) y_predd = tree.predict(X_test_fuzzy1) y_pred.append(y_predd) X_test_fuzzy.append(X_test_fuzzy1) y_test_fuzzy.append(y_test_fuzzy1)y_pred = to_categorical(np.concatenate(y_pred), num_classes=3) y_pred1 = to_categorical(np.concatenate(y_pred1), num_classes=3) y_test = to_categorical(np.concatenate(y_test), num_classes=3) y_test_fuzzy = to_categorical(np.concatenate(y_test_fuzzy), num_classes=3) print(y_pred.shape) print(y_pred1.shape) print(y_test.shape) print(y_test_fuzzy.shape) # 深度森林 report1 = classification_report(y_test, y_prprint("DF",report1) report = classification_report(y_test_fuzzy, y_pred) print("DF-F",report) mse = mean_squared_error(y_test, y_pred1) rmse = math.sqrt(mse) print('深度森林RMSE:', rmse) print('深度森林Accuracy:', accuracy_score(y_test, y_pred1)) mse = mean_squared_error(y_test_fuzzy, y_pred) rmse = math.sqrt(mse) print('F深度森林RMSE:', rmse) print('F深度森林Accuracy:', accuracy_score(y_test_fuzzy, y_pred)) mse = mean_squared_error(y_test, y_pred) rmse = math.sqrt(mse) print('F?深度森林RMSE:', rmse) print('F?深度森林Accuracy:', accuracy_score(y_test, y_pred))

最新推荐

recommend-type

天然气汽车供气系统减压装置毕业设计(cad+设计方案).zip

天然气汽车供气系统减压装置毕业设计(cad+设计方案)
recommend-type

PHP+SQL考勤系统安全性实现(源代码+论文+答辩PPT+指导书)

PHP+SQL考勤系统安全性实现(源代码+论文+答辩PPT+指导书)
recommend-type

NumPy 的用途是什么

NumPy 的用途是什么
recommend-type

毕业设计 基于javaweb的在线答题平台

毕业设计 基于javaweb的在线答题平台
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解答下列问题:S—>S;T|T;T—>a 构造任意项目集规范族,构造LR(0)分析表,并分析a;a

对于这个文法,我们可以构造以下项目集规范族: I0: S -> .S S -> .T T -> .a I1: S -> S. [$ T -> T. [$ I2: S -> T. I3: S -> S.;S S -> S.;T T -> T.;a 其中,点(.)表示已经被扫描过的符号,;$表示输入串的结束符号。 根据项目集规范族,我们可以构造出LR(0)分析表: 状态 | a | $ ---- | - | - I0 | s3| I1 | |acc I2 | | 其中s3表示移进到状态3,acc表示接受。在分析字符串a;a时,我们可以按照以下步骤进行
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依