x = F.threshold(-x, -1, -1)
时间: 2023-09-14 15:05:54 浏览: 84
这行代码使用了 PyTorch 中的阈值函数,将输入张量 x 中小于 -1 的值设置为 -1,大于等于 -1 的值保持不变。具体而言,函数的定义如下:
```
torch.threshold(input, threshold, value, inplace=False) -> Tensor
```
其中,
- input:输入张量
- threshold:阈值
- value:小于阈值的元素设置为该值
- inplace:是否原地操作,即是否把操作结果直接存储到输入张量中。默认为 False。
因此,该行代码的作用是将 x 中小于 -1 的元素替换为 -1。
相关问题
import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt # 加载 iris 数据 iris = load_iris() # 只选取两个特征和两个类别进行二分类 X = iris.data[(iris.target==0)|(iris.target==1), :2] y = iris.target[(iris.target==0)|(iris.target==1)] # 将标签转化为 0 和 1 y[y==0] = -1 # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 实现逻辑回归算法 class LogisticRegression: def __init__(self, lr=0.01, num_iter=100000, fit_intercept=True, verbose=False): self.lr = lr self.num_iter = num_iter self.fit_intercept = fit_intercept self.verbose = verbose def __add_intercept(self, X): intercept = np.ones((X.shape[0], 1)) return np.concatenate((intercept, X), axis=1) def __sigmoid(self, z): return 1 / (1 + np.exp(-z)) def __loss(self, h, y): return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean() def fit(self, X, y): if self.fit_intercept: X = self.__add_intercept(X) # 初始化参数 self.theta = np.zeros(X.shape[1]) for i in range(self.num_iter): # 计算梯度 z = np.dot(X, self.theta) h = self.__sigmoid(z) gradient = np.dot(X.T, (h - y)) / y.size # 更新参数 self.theta -= self.lr * gradient # 打印损失函数 if self.verbose and i % 10000 == 0: z = np.dot(X, self.theta) h = self.__sigmoid(z) loss = self.__loss(h, y) print(f"Loss: {loss} \t") def predict_prob(self, X): if self.fit_intercept: X = self.__add_intercept(X) return self.__sigmoid(np.dot(X, self.theta)) def predict(self, X, threshold=0.5): return self.predict_prob(X) >= threshold # 训练模型 model = LogisticRegressio
n()
model.fit(X_train, y_train)
# 在测试集上进行预测
y_pred = model.predict(X_test)
# 计算准确率
accuracy = np.sum(y_pred == y_test) / y_test.shape[0]
print(f"Accuracy: {accuracy}")
# 可视化
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_pred)
plt.show()
请问这段代码实现了什么功能?
public Point2d RefineSubPixel(Mat image, Point2d lower, Point2d upper) { // 提取感兴趣区域 Rect roiRect = new Rect((int)lower.X, (int)lower.Y, (int)(upper.X - lower.X), (int)(upper.Y - lower.Y)); Mat roi = new Mat(image, roiRect); // 初始化初始点 Point2d refinedPoint = new Point2d(roi.Cols / 2.0, roi.Rows / 2.0); // 定义优化终止标准 var termCriteria = new TermCriteria(CriteriaTypes.MaxIter | CriteriaTypes.Eps, 20, 0.03); // 执行优化迭代 if (roi.Width > 1 && roi.Height > 1) { // 预处理 var grayRoi = new Mat(); Cv2.PyrMeanShiftFiltering(roi, roi, 2, 2); Cv2.CvtColor(roi, grayRoi, ColorConversionCodes.BGR2GRAY); Cv2.Threshold(grayRoi, grayRoi, 0, 255, ThresholdTypes.Binary | ThresholdTypes.Otsu); // 迭代更新点坐标 var delta = new Point2d(); var point = new Point2d(refinedPoint.X, refinedPoint.Y); var bestPoint = new Point2d(refinedPoint.X, refinedPoint.Y); var width = image.Cols; var height = image.Rows; var targetGray = grayRoi.At<byte>((int)point.Y, (int)point.X); var minError = double.MaxValue; var precision = 1e-6; for (int i = 0; i < termCriteria.MaxCount; i++) { int x = (int)Math.Round(point.X); int y = (int)Math.Round(point.Y); if (x <= 0 || y <= 0 || x >= grayRoi.Cols - 1 || y >= grayRoi.Rows - 1) { break; } // 计算当前点周围的梯度信息 var derivX = (grayRoi.At<byte>(y, x + 1) - grayRoi.At<byte>(y, x - 1)) / 2.0; var derivY = (grayRoi.At<byte>(y + 1, x) - grayRoi.At<byte>(y - 1, x)) / 2.0; var hessian = new Mat(2, 2, MatType.CV_64F); hessian.Set<double>(0, 0, grayRoi.At<byte>(y, x + 1) + grayRoi.At<byte>(y, x - 1) - 2 * grayRoi.At<byte>(y, x)); hessian.Set<double>(0, 1, (grayRoi.At<byte>(y + 1, x + 1) - grayRoi.At<byte>(y + 1, x - 1) - grayRoi.At<byte>(y - 1, x + 1) + grayRoi.At<byte>(y - 1, x - 1)) / 4.0); hessian.Set<double>(1, 0, hessian.At<double>(0, 1)); hessian.Set<double>(1, 1, grayRoi.At<byte请完善代码
>(y + 1, x) + grayRoi.At<byte>(y - 1, x) - 2 * grayRoi.At<byte>(y, x)); // 求解线性方程组,更新点坐标 var deltaMat = new Mat(2, 1, MatType.CV_64F); deltaMat.Set<double>(0, 0, derivX); deltaMat.Set<double>(1, 0, derivY); var hessianInv = hessian.Inv(); var deltaPoint = hessianInv * deltaMat; delta.X = deltaPoint.At<double>(0, 0); delta.Y = deltaPoint.At<double>(1, 0); point -= delta; point.X = Math.Max(Math.Min(point.X, roi.Cols - 1), 0); point.Y = Math.Max(Math.Min(point.Y, roi.Rows - 1), 0); // 判断是否收敛 var currentGray = grayRoi.At<byte>((int)point.Y, (int)point.X); if (Math.Abs(currentGray - targetGray) < minError) { minError = Math.Abs(currentGray - targetGray); bestPoint = new Point2d(point.X, point.Y); } if (Math.Sqrt(delta.X * delta.X + delta.Y * delta.Y) < precision) { break; } } refinedPoint = bestPoint + new Point2d(lower.X, lower.Y); } return refinedPoint; }
这段代码是用于对图像中某个区域内的点进行亚像素级别的精确定位。具体实现过程是通过迭代优化,计算当前点周围的梯度信息和Hessian矩阵,然后求解线性方程组并更新点坐标,直到达到优化终止标准为止。
其中,先通过PyrMeanShiftFiltering函数对感兴趣区域进行预处理,然后再用CvtColor函数将其转换为灰度图像,接着用Threshold函数对其进行二值化处理。在迭代过程中,还需要判断当前点是否在图像边界内,以及判断是否达到优化终止标准。最后返回经过优化后的精确点坐标。
阅读全文