Eigen::Vector3f tmp_t_verts = cam->m_exter_calib.topRightCorner(3, 1); Eigen::Matrix3f tmp_inv_r_mat= cam->m_exter_calib.topLeftCorner(3, 3).transpose(); Eigen::Vector3f tmp_root_point = -tmp_inv_r_mat * tmp_t_verts;
时间: 2024-03-28 08:37:26 浏览: 146
这段代码主要是对相机的外参数进行计算,具体分为三步:
1. 首先,从相机的外参数矩阵(3x4)中取出右上角的3x1矩阵,即相机的平移向量tmp_t_verts。
2. 然后,从相机的外参数矩阵中取出左上角的3x3矩阵,即相机的旋转矩阵,并对其进行转置操作,得到tmp_inv_r_mat。
3. 最后,通过公式 tmp_root_point = -tmp_inv_r_mat * tmp_t_verts 计算出相机坐标系下的原点在世界坐标系下的位置tmp_root_point。
也就是说,这段代码用于计算相机坐标系下的原点在世界坐标系下的位置,是相机标定和位姿估计等操作中常用的计算方法之一。
相关问题
for (int camera_index = 0; camera_index < this->m_safe_camera_list.size(); ++camera_index) { camera* cam = &(this->m_safe_camera_list[camera_index]); if (cam->m_is_exter_calib_check_mark == true) { // as a Internal reference K of the camera, the K-1 is : // 1/ax 0 -px/ax // 0 1/ay -py/ay // 0 0 1 Eigen::Matrix3f invk; invk.setIdentity(); invk(0, 0) = 1.0 / cam->m_inter_calib(0, 0); invk(0, 2) = -1.0 * cam->m_inter_calib(0, 2) / cam->m_inter_calib(0, 0); invk(1, 1) = 1.0 / cam->m_inter_calib(1, 1); invk(1, 2) = -1.0 * cam->m_inter_calib(1, 2) / cam->m_inter_calib(1, 1); Eigen::Vector3f tmp_t_verts = cam->m_exter_calib.topRightCorner(3, 1); Eigen::Matrix3f tmp_inv_r_mat= cam->m_exter_calib.topLeftCorner(3, 3).transpose(); Eigen::Vector3f tmp_root_point = -tmp_inv_r_mat * tmp_t_verts; for (int pose_index = 0; pose_index < cam->m_2D_pose_list.size(); ++pose_index) { Eigen::MatrixXf pose = cam->m_2D_pose_list[pose_index]; // check the pose's Confidence, if all the joints's confidiance is smaller than the gain, drop out float confidence = pose.row(2).maxCoeff(); if (confidence < this->m_joint_confidence_gian) { continue; }; my_radials tmpradials; tmpradials.m_2d_pose = pose; tmpradials.m_root_point = tmp_root_point; tmpradials.m_radials_points = (invk * pose.topRows(2).colwise().homogeneous()).colwise().normalized(); tmpradials.m_radials_points = tmp_inv_r_mat * tmpradials.m_radials_points; tmpradials.m_3d_pose_ID = -1; tmpradials.m_camera_index = camera_index; tmpradials.m_poes_index = pose_index; tmpradials.m_pose_confidence = pose.row(2).leftCols(7).sum(); this->m_3d_radials.push_back(tmpradials); } } }
这段代码是一个 for 循环,遍历了一个名为 m_safe_camera_list 的相机列表。对于列表中的每个相机,如果其 m_is_exter_calib_check_mark 属性为 true,则进行以下操作:
1. 计算相机的内参矩阵 K 的逆矩阵 invk,其中 K 的值被存储在相机的 m_inter_calib 属性中;
2. 计算相机的外参矩阵 m_exter_calib 的逆矩阵的转置矩阵 tmp_inv_r_mat;
3. 根据 tmp_inv_r_mat 和 m_exter_calib 中的平移向量计算相机在世界坐标系下的位置 tmp_root_point;
4. 遍历相机 m_2D_pose_list 中的姿态,对于每个姿态:
- 检查该姿态的置信度是否大于设定的阈值 m_joint_confidence_gian,如果不是则跳过;
- 构建一个名为 tmpradials 的结构体,存储该姿态的相关信息,包括姿态的 2D 坐标、3D 坐标、相机索引、姿态索引等;
- 将 tmpradials 添加到名为 m_3d_radials 的结构体列表中。
整个代码的作用是将相机的 2D 姿态转换为 3D 姿态,并将结果存储在 m_3d_radials 中。
void Trajectory::predict_box( uint idx_duration, std::vector<Box>& vec_box, std::vector<Eigen::MatrixXf, Eigen::aligned_allocatorEigen::MatrixXf>& vec_cova, bool& is_replay_frame) { vec_box.clear(); vec_cova.clear(); if (is_replay_frame) { for (auto iter = map_current_box_.begin(); iter != map_current_box_.end(); ++iter) { Destroy(iter->second.track_id()); } m_track_start_.Clear_All(); NU = 0; is_replay_frame = false; } Eigen::MatrixXf F_temp = F_; F_temp(0, 1) = idx_duration * F_(0, 1); F_temp(2, 3) = idx_duration * F_(2, 3); F_temp(4, 5) = idx_duration * F_(4, 5); uint64_t track_id; Eigen::Matrix<float, 6, 1> state_lidar; Eigen::Matrix<float, 6, 6> P_kkminus1; Eigen::Matrix3f S_temp; for (auto beg = map_current_box_.begin(); beg != map_current_box_.end(); ++beg) { float t = (fabs(0.1 - beg->second.frame_duration()) > 0.05) ? 0.1 : 0.2 - beg->second.frame_duration(); F_temp(0, 1) = t; F_temp(2, 3) = t; F_temp(4, 5) = t; // uint64_t timestamp_new = beg->second.timestamp() + uint(10.0 * t * NANO_FRAME); track_id = beg->first; state_lidar = F_temp * map_lidar_state_.at(track_id); P_kkminus1 = F_temp * map_lidar_cova_.at(track_id) * F_temp.transpose() + Q_lidar_; S_temp = H_ * P_kkminus1 * H_.transpose() + R_lidar_; float psi_new = (1 - P_D_ * P_G_) * beg->second.psi() / (1 - P_D_ * P_G_ * beg->second.psi()); Box bbox = beg->second; bbox.set_psi(psi_new); // bbox.set_timestamp(timestamp_new); bbox.set_position_x(state_lidar(0)); bbox.set_position_y(state_lidar(2)); bbox.set_position_z(state_lidar(4)); bbox.set_speed_x(state_lidar(1)); bbox.set_speed_y(state_lidar(3)); bbox.set_speed_z(state_lidar(5)); vec_box.emplace_back(bbox); vec_cova.emplace_back(S_temp); } AINFO << "Finish predict with duration frame num: " << idx_duration; } 代码解读
这段代码是一个名为Trajectory的类中的predict_box函数。函数接受一个时间段的索引(idx_duration),一个存储Box对象的向量(vec_box),一个存储Eigen矩阵的向量(vec_cova),以及一个布尔变量(is_replay_frame)作为参数。
首先,函数清空vec_box和vec_cova两个向量。
然后,如果is_replay_frame为true,则遍历map_current_box_中的元素,并销毁每个元素的track_id。然后清空m_track_start_和NU,并将is_replay_frame设置为false。
接下来,创建一个临时的F_temp矩阵,并将其与原始的F_矩阵进行乘法操作,并将其中的某些元素乘以idx_duration。这是为了根据时间段来预测box的状态。
然后,遍历map_current_box_中的元素。对于每个元素,计算一个临时变量t,并根据t更新F_temp矩阵。然后使用F_temp和map_lidar_state_中相应的track_id来计算state_lidar矩阵。接着,使用F_temp、map_lidar_cova_中相应的track_id和Q_lidar_来计算P_kkminus1矩阵。再使用H_、P_kkminus1和R_lidar_来计算S_temp矩阵。
之后,根据一些计算得到的值,更新beg->second中的一些属性,并将其加入vec_box中。同时,将S_temp加入vec_cova中。
最后,输出一条日志信息,表示完成了使用给定时间段进行预测。
请注意,这只是对代码进行的初步解读,具体实现可能还涉及其他变量和函数。
阅读全文