if args.model == 'stackhourglass': model = stackhourglass(args.maxdisp) elif args.model == 'basic': model = basic(args.maxdisp) else: print('no model') if args.cuda: model = nn.DataParallel(model) model.cuda() if args.loadmodel is not None: print('Load pretrained model') pretrain_dict = torch.load(args.loadmodel) model.load_state_dict(pretrain_dict['state_dict']) print('Number of model parameters: {}'.format(sum([p.data.nelement() for p in model.parameters()])))什么意思
时间: 2024-03-04 07:51:49 浏览: 102
python继承threading.Thread实现有返回值的子类实例
这段代码主要是为了根据命令行参数 `args.model` 创建模型,并进行模型加载和 CUDA 设置。
首先,根据 `args.model` 的取值,创建不同的深度学习模型。如果 `args.model` 的取值为 `'stackhourglass'`,则创建 `stackhourglass` 模型,否则创建 `basic` 模型。`args.maxdisp` 表示最大视差值,这个参数会作为模型的一个输入。
其次,如果 `args.cuda` 为 True,即使用 CUDA 进行模型训练和推理,则通过 `nn.DataParallel()` 将模型转换为多 GPU 并行计算模式,提升模型训练和推理的速度。然后通过 `model.cuda()` 将模型移动到 GPU 上进行计算。
然后,如果 `args.loadmodel` 不为 None,则加载预训练模型参数,将其赋值给模型。`torch.load()` 函数可以加载 PyTorch 模型的参数,返回一个字典类型的对象。其中 `'state_dict'` 键对应的值是模型的参数字典。
最后,通过打印语句输出模型的参数数量,方便用户了解模型的规模。
阅读全文