用Matlab 求解方程 d 2 y(t) + 4 dy(t) + 3y(t) = dx(t) + 3x(t), x(t) = e−tu(t) 的零状态响应。
时间: 2023-08-05 18:07:46 浏览: 87
用MATLAB解方程零点的方法。
首先,我们可以将方程改写为特征方程和非齐次方程的形式:
特征方程:d^2y(t) + 4dy(t) + 3y(t) = 0
非齐次方程:dx(t) + 3x(t) = 0
对于特征方程,我们可以求出其特征根:
λ^2 + 4λ + 3 = 0
解得 λ1 = -1, λ2 = -3
因此,特征方程的通解为:
y(t) = c1e^(-t) + c2e^(-3t)
接下来,我们需要求出非齐次方程的零状态响应,即对于输入x(t) = e^(-tu(t)),其对应的零状态响应y(t)。
我们可以使用拉普拉斯变换的方法求解。
首先对于非齐次方程,我们可以进行拉普拉斯变换:
sY(s) - y(0) + 4sY(s) + 3Y(s) = X(s)/(s+3)
其中,y(0) 为初始时刻的状态。
将其改写为 Y(s) 的表达式:
Y(s) = X(s)/(s^2 + 4s + 3) + y(0) / (s+3) + C
其中,C 为常数,由于我们要求的是零状态响应,因此 C = 0。
这样,我们可以得到 Y(s) 的表达式,再将其进行拉普拉斯反变换,即可得到 y(t) 的表达式:
y(t) = (1/2)e^(-t) - (1/2)e^(-3t) + (1/2)e^(-t)u(t)
因此,对于输入 x(t) = e^(-tu(t)),其对应的零状态响应为:
y(t) = (1/2)e^(-t) - (1/2)e^(-3t) + (1/2)e^(-t)u(t)
其中,u(t) 为单位阶跃函数。
阅读全文