六、对iris数据集进行拆分,并查看拆分结果。 (1)正确调用鸢尾花iris数据集 (2)正确调用sklearn.model_selection类中的train_test_split函数 (3)正确使用train_test_split函数拆分数据集 (4)输出X_train和X_test的维度
时间: 2023-07-20 18:07:25 浏览: 85
下面是使用Python代码对iris数据集进行拆分,并查看拆分结果的方法:
```python
# 导入所需的包
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
# 载入iris数据集
iris = load_iris()
# 拆分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=42)
# 输出训练集和测试集的维度
print("X_train的维度为:", X_train.shape)
print("X_test的维度为:", X_test.shape)
```
输出结果为:
```
X_train的维度为: (105, 4)
X_test的维度为: (45, 4)
```
其中,参数test_size表示测试集所占比例,random_state为随机数种子,用于保证每次运行程序得到的拆分结果一致。
相关问题
准备:鸢尾花数据集。 调用sklearn库,使用KNN分类方法完成鸢尾花数据的分类。
好的,我可以帮你完成这个任务。首先,我们需要先导入鸢尾花数据集并将其拆分为训练集和测试集。然后,我们可以使用sklearn库中的KNeighborsClassifier方法来训练一个KNN模型,并用测试集评估其性能。下面是完整的代码:
```python
# 导入必要的库
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
# 加载鸢尾花数据集
iris = load_iris()
# 将数据集拆分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42)
# 创建KNN分类器并训练模型
knn = KNeighborsClassifier()
knn.fit(X_train, y_train)
# 使用测试集评估模型性能
y_pred = knn.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print('Accuracy:', accuracy)
```
输出结果应该类似于:Accuracy: 1.0,这表示我们的KNN模型在鸢尾花数据集上取得了100%的准确率。
给出python实现贝叶斯算法的代码,不调用sklearn库,对鸢尾花数据集分类,实现结果可视化
好的,以下是贝叶斯算法的python代码(不使用sklearn库):
```
import csv
import random
import math
import numpy as np
import matplotlib.pyplot as plt
def load_dataset(filename):
dataset = []
with open(filename, 'r') as csv_file:
csv_reader = csv.reader(csv_file)
for row in csv_reader:
if not row:
continue
data = [float(x) for x in row[:-1]]
label = row[-1]
dataset.append((data, label))
return dataset
def split_dataset(dataset, split_ratio):
train_size = int(len(dataset) * split_ratio)
train_set = []
test_set = list(dataset)
while len(train_set) < train_size:
index = random.randrange(len(test_set))
train_set.append(test_set.pop(index))
return train_set, test_set
def separate_by_class(dataset):
separated = {}
for data, label in dataset:
if label not in separated:
separated[label] = []
separated[label].append(data)
return separated
def calculate_mean(numbers):
return sum(numbers) / float(len(numbers))
def calculate_stddev(numbers):
mean = calculate_mean(numbers)
variance = sum([pow(x - mean, 2) for x in numbers]) / float(len(numbers) - 1)
return math.sqrt(variance)
def summarize_dataset(dataset):
summaries = [(calculate_mean(attribute), calculate_stddev(attribute)) for attribute in zip(*dataset)]
del summaries[-1]
return summaries
def summarize_by_class(dataset):
separated = separate_by_class(dataset)
summaries = {}
for class_label, instances in separated.items():
summaries[class_label] = summarize_dataset(instances)
return summaries
def calculate_probability(x, mean, stddev):
exponent = math.exp(-math.pow(x - mean, 2) / (2 * math.pow(stddev, 2)))
return (1 / (math.sqrt(2 * math.pi) * stddev)) * exponent
def calculate_class_probabilities(summaries, input_vector):
probabilities = {}
for class_label, class_summaries in summaries.items():
probabilities[class_label] = 1
for i in range(len(class_summaries)):
mean, stddev = class_summaries[i]
x = input_vector[i]
probabilities[class_label] *= calculate_probability(x, mean, stddev)
return probabilities
def predict(summaries, input_vector):
probabilities = calculate_class_probabilities(summaries, input_vector)
best_label, best_prob = None, -1
for class_label, probability in probabilities.items():
if best_label is None or probability > best_prob:
best_prob = probability
best_label = class_label
return best_label
def get_predictions(summaries, test_set):
predictions = []
for i in range(len(test_set)):
result = predict(summaries, test_set[i][0])
predictions.append(result)
return predictions
def get_accuracy(test_set, predictions):
correct = 0
for i in range(len(test_set)):
if test_set[i][-1] == predictions[i]:
correct += 1
return (correct / float(len(test_set))) * 100.0
def plot_data(test_data, predicted_data):
data = np.array(test_data)
colors = ['blue', 'red', 'green']
markers = ['o', 's', '^']
for i in range(3):
x = data[data[:, -1] == str(i)][:, 0]
y = data[data[:, -1] == str(i)][:, 1]
predicted_x = data[predicted_data == str(i)][:, 0]
predicted_y = data[predicted_data == str(i)][:, 1]
plt.scatter(x, y, color=colors[i], marker=markers[i], label=f'Class {i}')
plt.scatter(predicted_x, predicted_y, edgecolors='black', facecolors='none', marker=markers[i])
plt.legend()
plt.show()
if __name__ == '__main__':
filename = 'iris.csv'
split_ratio = 0.67
dataset = load_dataset(filename)
train_set, test_set = split_dataset(dataset, split_ratio)
print(f'Split {len(dataset)} rows into train={len(train_set)} and test={len(test_set)} rows')
summaries = summarize_by_class(train_set)
predictions = get_predictions(summaries, test_set)
accuracy = get_accuracy(test_set, predictions)
print(f'Accuracy: {accuracy}%')
plot_data(test_set, np.array(predictions))
```
其中,`filename` 变量指定数据集文件名;`split_ratio` 变量指定数据集的拆分比例;`load_dataset` 函数从 CSV 文件读取数据集;`split_dataset` 函数将数据集拆分成训练集和测试集;`separate_by_class` 函数将数据集按标签分类;`summarize_dataset` 函数计算数据集每个特征的均值和标准差,返回这些统计数据作为一个元组数组;`summarize_by_class` 函数计算每个类别的数据集的统计数据;`calculate_probability` 函数计算特征值的概率密度函数值;`calculate_class_probabilities` 函数计算输入向量的每个类别的概率密度函数值;`predict` 函数基于概率密度函数值选择可能性最高的类别作为预测结果;`get_predictions` 函数计算测试数据集的所有预测结果;`get_accuracy` 函数计算预测结果的准确率;`plot_data` 函数将测试数据集和预测结果可视化。
阅读全文