解释if __name__ == "__main__": Cuda = True distributed = False sync_bn = False fp16 = False classes_path = 'model_data/cls_classes.txt' input_shape = [224, 224] backbone = "mobilenetv2" pretrained = True model_path = "" Init_Epoch = 0 Freeze_Epoch = 50 Freeze_batch_size = 32 UnFreeze_Epoch = 200 Unfreeze_batch_size = 32 Freeze_Train = True Init_lr = 1e-2 Min_lr = Init_lr * 0.01 optimizer_type = "sgd" momentum = 0.9 weight_decay = 5e-4 lr_decay_type = "cos" save_period = 10 save_dir = 'logs' num_workers = 4 train_annotation_path = "cls_train.txt" test_annotation_path = 'cls_test.txt'
时间: 2024-04-29 13:19:09 浏览: 232
`if __name__ == "__main__":` 是 Python 中的一个约定,表示只有在当前脚本被直接执行时才会运行以下代码块,而当脚本作为模块导入时,这些代码不会运行。这个代码块中定义了一些变量和参数,包括是否使用 CUDA 加速、是否使用分布式训练、是否使用同步BN等。其中,classes_path 定义了存储分类标签的文件路径,input_shape 定义了输入图像的大小,backbone 定义了使用的网络模型,pretrained 定义了是否使用预训练模型等。另外还定义了一些训练参数,如学习率、优化器类型、权重衰减等。最后还定义了训练数据和测试数据的标注文件路径。这些参数的值可以在训练模型时进行调整。
相关问题
解释 if sync_bn and ngpus_per_node > 1 and distributed: model_train = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model_train) elif sync_bn: print("Sync_bn is not support in one gpu or not distributed.")
这段代码是用于在分布式训练时启用同步批归一化(Sync Batch Normalization)。
如果设置了 `sync_bn` 为 True,同时当前机器上的 GPU 数量大于 1,且已经启用了分布式训练(即 `distributed` 为 True),则调用 `torch.nn.SyncBatchNorm.convert_sync_batchnorm` 方法启用同步批归一化。同步批归一化可以在分布式训练中保持各个进程上的均值和方差一致,从而提高训练效果和稳定性。
如果设置了 `sync_bn` 为 True,但是当前机器上的 GPU 数量为 1 或者没有启用分布式训练,则打印提示信息,表示无法启用同步批归一化。
最后,将启用或未启用同步批归一化的模型返回给 `model_train` 变量。
Namespace(aa='rand-m9-mstd0.5-inc0,1,2,3,7,8,9,10,11,12,13,14,6', batch_size=64, clip_grad=None, color_jitter=0.4, cooldown_epochs=10, cutmix=0, cutmix_minmax=None, data_path='../OPTIMAL-31-37', data_set='IMNET', decay_epochs=30, decay_rate=0.1, device='cuda', dist_url='env://', distributed=False, drop=0.01, drop_block=None, drop_path=0.1, epochs=240, eval=False, inat_category='name', input_size=224, load_pretrain=False, lr=0.06, lr_noise=None, lr_noise_pct=0.67, lr_noise_std=1.0, min_lr=1e-05, mixup=0, mixup_mode='batch', mixup_prob=1.0, mixup_switch=True, mixup_switch_prob=0.5, model='seresnext50_32x4d', model_ema=True, model_ema_decay=0.99996, model_ema_force_cpu=False, momentum=0.9, no_aug=False, num_workers=10, opt='sgd', opt_betas=None, opt_eps=1e-08, output_dir='../deit-main/checkpoint/', patience_epochs=10, pin_mem=True, pretrain_address='', print_epoch=2, recount=1, remode='pixel', repeated_aug=False, reprob=0.25, resplit=False, resume='', scale=(0.2, 1.0), sched='cosine', seed=0, smoothing=0.1, start_epoch=0, train_interpolation='bicubic', use_prefetcher=False, warmup_epochs=5, warmup_lr=1e-06, weight_decay=0.0001, world_size=1)给出这段参数的详细解释
这段参数是一个Python命名空间(Namespace),其中包含了用于训练机器学习模型的一系列参数。具体解释如下:
- aa: 随机种子相关参数,用于数据增强。
- batch_size: 每个批次的样本数量。
- clip_grad: 梯度裁剪的阈值。
- color_jitter: 颜色抖动增强的强度。
- cooldown_epochs: 学习率衰减后,在进行下一次衰减之前等待的 epochs 数量。
- cutmix: CutMix 数据增强的系数。
- cutmix_minmax: CutMix 增强中随机裁剪的最小和最大比例。
- data_path: 存储数据集的路径。
- data_set: 数据集名称。
- decay_epochs: 学习率衰减的 epochs 数量。
- decay_rate: 学习率衰减的比例。
- device: 训练设备,例如 CPU 或 GPU。
- dist_url: 分布式训练的 URL。
- distributed: 是否进行分布式训练。
- drop: Dropout 正则化的比例。
- drop_block: DropBlock 正则化的比例。
- drop_path: DropPath 正则化的比例。
- epochs: 训练 epochs 数量。
- eval: 是否在验证集上进行评估。
- inat_category: iNaturalist 数据集的分类方式。
- input_size: 输入图像的大小。
- load_pretrain: 是否加载预训练模型。
- lr: 初始学习率。
- lr_noise: 学习率噪声的系数。
- lr_noise_pct: 学习率噪声的占比。
- lr_noise_std: 学习率噪声的标准差。
- min_lr: 最小学习率。
- mixup: Mixup 数据增强的系数。
- mixup_mode: Mixup 增强的方式。
- mixup_prob: Mixup 增强的概率。
- mixup_switch: 是否在 Mixup 增强中打开随机开关。
- mixup_switch_prob: 随机开关打开的概率。
- model: 选择的模型名称。
- model_ema: 是否使用模型指数滑动平均(EMA)。
- model_ema_decay: 模型 EMA 的衰减率。
- model_ema_force_cpu: 是否强制在 CPU 上使用模型 EMA。
- momentum: SGD 优化器的动量。
- no_aug: 是否禁用数据增强。
- num_workers: 数据加载器的工作线程数量。
- opt: 优化器名称。
- opt_betas: Adam 优化器的 beta 参数。
- opt_eps: Adam 优化器的 epsilon 参数。
- output_dir: 模型检查点的输出路径。
- patience_epochs: 在验证集上等待的 epochs 数量,用于提高验证集性能。
- pin_mem: 是否使用 pinned memory 进行数据加载。
- pretrain_address: 预训练模型的地址。
- print_epoch: 每多少个 epochs 打印一次训练信息。
- recount: 数据增强的重复次数。
- remode: 随机增强的方式。
- repeated_aug: 是否对同一图像进行多次数据增强。
- reprob: 随机擦除的比例。
- resplit: 是否对数据集进行重新划分。
- resume: 恢复训练的检查点路径。
- scale: 随机缩放的比例范围。
- sched: 学习率调度器名称。
- seed: 随机数种子。
- smoothing: Label Smoothing 正则化的比例。
- start_epoch: 起始 epoch 数量。
- train_interpolation: 训练集插值方式。
- use_prefetcher: 是否使用数据预加载。
- warmup_epochs: 学习率预热的 epochs 数量。
- warmup_lr: 预热学习率。
- weight_decay: 权重衰减的比例。
- world_size: 分布式训练的进程数量。
阅读全文