scaler.step(optimizer) scaler.update() optimizer.zero_grad()
时间: 2024-05-26 13:14:12 浏览: 182
这段代码使用了PyTorch中的混合精度训练技术,即使用半精度浮点数代替全精度浮点数进行训练,以减少显存的占用和加速训练过程。
具体来说,`scaler.step(optimizer)`是在混合精度上进行优化器的梯度更新,`scaler.update()`则是用于更新scaler内部的缩放因子,`optimizer.zero_grad()`则是用于清空优化器中的梯度信息,以便下一次迭代时重新计算梯度。
相关问题
for batch_idx, (data, target) in enumerate(self.train_loader): data = data[..., :self.args.input_dim] label = target[..., :self.args.output_dim] # (..., 1) self.optimizer.zero_grad() #teacher_forcing for RNN encoder-decoder model #if teacher_forcing_ratio = 1: use label as input in the decoder for all steps if self.args.teacher_forcing: global_step = (epoch - 1) * self.train_per_epoch + batch_idx teacher_forcing_ratio = self._compute_sampling_threshold(global_step, self.args.tf_decay_steps) else: teacher_forcing_ratio = 1. # data and target shape: B, T, N, F; output shape: B, T, N, F data, target维度均为64,12,307,1 output = self.model(data, target, teacher_forcing_ratio=teacher_forcing_ratio) if self.args.real_value: label = self.scaler.inverse_transform(label) loss = self.loss(output, label) loss.backward() # add max grad clipping if self.args.grad_norm: torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.max_grad_norm) self.optimizer.step() total_loss += loss.item()
这段代码是一个训练循环的一部分,用于对批次数据进行训练。代码中使用`enumerate(self.train_loader)`来遍历训练数据集,并在每个批次中进行以下操作:
1. 首先,通过`data[..., :self.args.input_dim]`和`target[..., :self.args.output_dim]`对输入数据和标签进行切片,以获取指定维度的子集。这是为了确保输入和标签的维度匹配。
2. 然后,调用`self.optimizer.zero_grad()`来清零模型参数的梯度。
3. 接下来,根据`self.args.teacher_forcing`的值来确定是否使用"teacher forcing"的方法。如果`self.args.teacher_forcing`为真,则计算当前批次的全局步数,并使用`self._compute_sampling_threshold()`方法计算出"teacher forcing"的比例。否则,将"teacher forcing"比例设置为1.0,表示在解码器中的所有步骤都使用标签作为输入。
4. 调用`self.model(data, target, teacher_forcing_ratio=teacher_forcing_ratio)`来获取模型的输出。如果`self.args.real_value`为真,则通过`self.scaler.inverse_transform(label)`将标签逆转换为原始值。
5. 计算模型输出和标签之间的损失,并将损失值添加到总损失`total_loss`中。
6. 调用`loss.backward()`计算梯度,并使用`torch.nn.utils.clip_grad_norm_()`对梯度进行最大梯度裁剪。
7. 最后,调用`self.optimizer.step()`来更新模型参数。
这个循环会遍历整个训练数据集,并在每个批次中计算和更新模型的损失。
帮我用pytorch代码实现在模型中使用LDAMLoss损失函数, 数据集读取代码如下: dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform) dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test) , mixup数据增强代码如下: mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) 训练过程部分代码如下: for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device, non_blocking=True), Variable(target).to(device,non_blocking=True) samples, targets = mixup_fn(data, target) loss output = model(samples) optimizer.zero_grad() if use_amp: with torch.cuda.amp.autocast(): loss = torch.nan_to_num(criterion_train(output, targets)) scaler.scale(loss).backward() torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) scaler.step(optimizer) scaler scaler.update() else: loss = criterion_train(output, targets) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) optimizer.step()
首先,需要安装LDAM-loss的pytorch实现,可以通过以下代码进行安装:
```python
!pip install ldam
```
然后,在训练过程中,需要进行以下步骤:
1. 定义LDAM-loss函数:
```python
from ldam import LDAMLoss
criterion_train = LDAMLoss(cls_num_list=[...], max_m=0.5, s=30)
```
其中,`cls_num_list`是每个类别的样本数目,`max_m`是最大的margin值,`s`是缩放因子。
2. 计算输出并计算损失函数:
```python
loss_output = model(samples)
loss = criterion_train(loss_output, targets)
```
3. 反向传播和梯度更新:
```python
optimizer.zero_grad()
if use_amp:
with torch.cuda.amp.autocast():
scaler.scale(loss).backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
scaler.step(optimizer)
scaler.update()
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
optimizer.step()
```
注意,LDAM-loss函数需要在构建模型之前计算每个类别的样本数目,并且在训练过程中需要使用这些信息。可以通过以下代码计算每个类别的样本数目:
```python
import numpy as np
cls_num_list = np.zeros(classes)
for _, label in train_loader.dataset:
cls_num_list[label] += 1
```
阅读全文