解释这段代码s_next, r, done, info = self.env.step(action) episode_step += 1 self.buffer.store_episode(s, u, r, s_next) s = s_next ep_rewards += r
时间: 2024-02-14 22:36:16 浏览: 60
这段代码是用于执行强化学习环境的核心代码块。具体来说,该代码块使用上一段代码中选择的动作action,执行环境的一次状态转移,并根据转移结果计算奖励值。
其中,self.env.step(action)方法用于执行一次状态转移,返回四个值:s_next表示转移后的下一个状态;r表示当前动作所获得的奖励值;done表示当前状态是否为终止状态;info是一个字典,包含一些额外的信息。
接着,将episode_step加1,用于记录当前轮游戏中的步数。
然后,使用self.buffer.store_episode()方法将当前转移存储到经验回放缓存中。存储的内容包括当前状态s、选择的动作u、当前动作获得的奖励r、转移后的下一个状态s_next。
接下来,将s_next赋值给s,用于进行下一次状态转移。
最后,将当前动作获得的奖励r加到累计奖励数组ep_rewards中。
相关问题
import akshare as ak import numpy as np import pandas as pd import random import matplotlib.pyplot as plt class StockTradingEnv: def __init__(self): self.df = ak.stock_zh_a_daily(symbol='sh000001', adjust="qfq").iloc[::-1] self.observation_space = self.df.shape[1] self.action_space = 3 self.reset() def reset(self): self.current_step = 0 self.total_profit = 0 self.done = False self.state = self.df.iloc[self.current_step].values return self.state def step(self, action): assert self.action_space.contains(action) if action == 0: # 买入 self.buy_stock() elif action == 1: # 卖出 self.sell_stock() else: # 保持不变 pass self.current_step += 1 if self.current_step >= len(self.df) - 1: self.done = True else: self.state = self.df.iloc[self.current_step].values reward = self.get_reward() self.total_profit += reward return self.state, reward, self.done, {} def buy_stock(self): pass def sell_stock(self): pass def get_reward(self): pass class QLearningAgent: def __init__(self, state_size, action_size): self.state_size = state_size self.action_size = action_size self.epsilon = 1.0 self.epsilon_min = 0.01 self.epsilon_decay = 0.995 self.learning_rate = 0.1 self.discount_factor = 0.99 self.q_table = np.zeros((self.state_size, self.action_size)) def act(self, state): if np.random.rand() <= self.epsilon: return random.randrange(self.action_size) else: return np.argmax(self.q_table[state, :]) def learn(self, state, action, reward, next_state, done): target = reward + self.discount_factor * np.max(self.q_table[next_state, :]) self.q_table[state, action] = (1 - self.learning_rate) * self.q_table[state, action] + self.learning_rate * target if self.epsilon > self.epsilon_min: self.epsilon *= self.epsilon_decay env = StockTradingEnv() agent = QLearningAgent(env.observation_space, env.action_space) for episode in range(1000): state = env.reset() done = False while not done: action = agent.act(state) next_state, reward, done, _ = env.step(action) agent.learn(state, action, reward, next_state, done) state = next_state if episode % 10 == 0: print("Episode: %d, Total Profit: %f" % (episode, env.total_profit)) agent.save_model("model-%d.h5" % episode) def plot_profit(env, title): plt.figure(figsize=(12, 6)) plt.plot(env.df.index, env.df.close, label="Price") plt.plot(env.df.index, env.profits, label="Profits") plt.legend() plt.title(title) plt.show() env = StockTradingEnv() agent = QLearningAgent(env.observation_space, env.action_space) agent.load_model("model-100.h5") state = env.reset() done = False while not done: action = agent.act(state) next_state, reward, done, _ = env.step(action) state = next_state plot_profit(env, "QLearning Trading Strategy")优化代码
1. 对于环境类 `StockTradingEnv`,可以考虑将 `buy_stock` 和 `sell_stock` 方法的具体实现写入 `step` 方法中,避免方法数量过多。
2. 可以将 `get_reward` 方法中的具体实现改为直接计算当前持仓的收益。
3. 在循环训练过程中,可以记录每个 episode 的总收益,并将这些数据保存下来,在训练完成后进行可视化分析。
4. 可以添加更多的参数来控制训练过程,比如学习率、衰减系数等。
5. 可以将 QLearningAgent 类中的方法进行整理和封装,提高代码的可读性和可维护性。同时,也可以添加一些对模型进行保存和加载的方法,便于模型的重用和共享。
解释这段代码 def test(self): returns = [] for time_step in tqdm(range(self.args.time_steps)): episode_step = 0 s = self.env.reset() rewards = np.array([0.0]) while True: u = [] actions = [] with torch.no_grad(): #for agent_id, agent in enumerate(self.agents): action1 = action2 = action3 = action4 = self.action0 action5 = self.agents.select_action(s, self.noise, self.epsilon) + self.action0 # 变道车动作 action = [action1, action2, action3, action4, action5] u.append(action5) # actions.append(action) episode_step += 1 s_next, r, done, info = self.env.step(action) s = s_next rewards = rewards + r# [:-1] if done[0] or episode_step % self.episode_limit == 0: returns.append(rewards) print("Episode:{}, Agent_1:{}".format(time_step, rewards)) break
这段代码是一个测试方法,用于测试智能体在环境中执行任务的效果。它首先通过一个for循环迭代环境中的时间步,然后在每个时间步中,重置环境状态并开始执行一个episode。在每个episode中,智能体根据当前状态选择一个动作,并执行该动作。执行完动作后,智能体观察新的状态和奖励,并将其存储在一个rewards列表中。当episode结束时,将rewards列表中的所有奖励加起来,并将结果存储在一个returns列表中,同时打印出该episode的总奖励。如果达到了episode_limit或者done标志为True,那么将返回值添加到returns列表中,打印出该episode的总奖励,并跳出循环,开始下一个episode。
阅读全文