while True: with torch.no_grad(): action1 = action2 = action3 = action4 = self.action0 action5 = self.agents.select_action(s, self.noise, self.epsilon) + self.action0 # 变道车动作 action = [action1, action2, action3, action4, action5] u = action5 # actions.append(action) s_next, r, done, info = self.env.step(action) episode_step += 1 self.buffer.store_episode(s, u, r, s_next) s = s_next ep_rewards += r
时间: 2024-02-15 20:28:40 浏览: 134
one hot编码:`torch.Tensor.scatter_()`函数用法详解
这段代码看起来是一个强化学习算法的主要训练循环,其中使用了一个基于PyTorch深度学习框架的模型。在每次循环中,模型接收当前状态s,并输出一个动作向量action,其中第5个元素action5表示变道车的动作。接着,这个动作向量被传递给环境,环境返回下一个状态s_next,奖励信号r以及一个标志done,表示当前episode是否结束。接着,当前状态s,动作向量action,下一个状态s_next以及奖励信号r被存储在一个经验缓存中,以便在后续训练中使用。最后,代码记录了当前episode的奖励总和ep_rewards和步数episode_step,以便输出和监视算法的性能。
阅读全文