帮我写一段DQN代码示例,并且逐行注释
时间: 2023-07-10 07:28:44 浏览: 92
好的,以下是一个简单的DQN代码示例,并逐行注释:
```python
import gym
import random
import numpy as np
from collections import deque
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
class DQNAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = deque(maxlen=2000) # 定义记忆库,长度为2000
self.gamma = 0.95 # 折扣因子
self.epsilon = 1.0 # 探索率
self.epsilon_min = 0.01 # 探索率的下限
self.epsilon_decay = 0.995 # 探索率的衰减率
self.learning_rate = 0.001 # 学习率
self.model = self._build_model() # 定义神经网络模型
def _build_model(self):
# 定义一个三层的全连接神经网络模型
model = Sequential()
model.add(Dense(24, input_dim=self.state_size, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(self.action_size, activation='linear'))
model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate))
return model
def remember(self, state, action, reward, next_state, done):
# 将当前状态、动作、奖励、下一个状态和done标识存储到记忆库中
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
# 以一定概率随机选择动作,或者根据当前状态选择最优动作
if np.random.rand() <= self.epsilon:
return random.randrange(self.action_size)
else:
return np.argmax(self.model.predict(state)[0])
def replay(self, batch_size):
# 从记忆库中随机抽取一批数据进行训练
minibatch = random.sample(self.memory, batch_size)
for state, action, reward, next_state, done in minibatch:
target = reward
if not done:
target = (reward + self.gamma * np.amax(self.model.predict(next_state)[0]))
target_f = self.model.predict(state)
target_f[0][action] = target
self.model.fit(state, target_f, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
def load(self, name):
# 加载神经网络模型的权重
self.model.load_weights(name)
def save(self, name):
# 保存神经网络模型的权重
self.model.save_weights(name)
if __name__ == "__main__":
# 创建CartPole-v1环境
env = gym.make('CartPole-v1')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
agent = DQNAgent(state_size, action_size)
done = False
batch_size = 32
for e in range(1000):
state = env.reset()
state = np.reshape(state, [1, state_size])
for time in range(500):
env.render()
action = agent.act(state)
next_state, reward, done, _ = env.step(action)
reward = reward if not done else -10
next_state = np.reshape(next_state, [1, state_size])
agent.remember(state, action, reward, next_state, done)
state = next_state
if done:
print("episode: {}/{}, score: {}, e: {:.2}"
.format(e, 1000, time, agent.epsilon))
break
if len(agent.memory) > batch_size:
agent.replay(batch_size)
if e % 50 == 0:
agent.save("cartpole-dqn.h5")
```
阅读全文