不调用库,写Fast-newman算法。python代码
时间: 2024-03-23 10:41:47 浏览: 106
Fast Newman算法的核心是贪心算法,它通过不断合并社区来优化模块度。下面提供一份Python代码实现Fast Newman算法。
```python
def fast_newman_algorithm(graph):
# 初始化每个节点为一个社区
communities = [[node] for node in graph.nodes()]
# 计算当前社区的模块度
modularity = compute_modularity(graph, communities)
# 标记社区是否合并
community_merged = True
while community_merged:
community_merged = False
for i in range(len(communities)):
for j in range(i+1, len(communities)):
# 计算合并社区后的模块度
merged_communities = communities.copy()
merged_communities[i] += merged_communities[j]
del merged_communities[j]
new_modularity = compute_modularity(graph, merged_communities)
if new_modularity > modularity:
# 合并社区
communities = merged_communities
modularity = new_modularity
community_merged = True
break
if community_merged:
break
return communities
def compute_modularity(graph, communities):
# 计算图的总边数
m = graph.number_of_edges()
# 计算每个社区的度数
degrees = dict(graph.degree())
# 计算每个社区内部的边数
internal_degree = 0
for community in communities:
for i in range(len(community)):
for j in range(i+1, len(community)):
if graph.has_edge(community[i], community[j]):
internal_degree += 1
# 计算每个社区的模块度
modularity = 0
for community in communities:
for node in community:
ki = degrees[node]
ki_in = 0
for j in community:
if graph.has_edge(node, j):
ki_in += 1
modularity += (ki_in / m) - ((ki / (2*m)) ** 2)
return modularity
```
上述代码中,`fast_newman_algorithm`函数实现了Fast Newman算法,它接受一个图作为输入,返回每个社区的集合。`compute_modularity`函数用于计算当前社区的模块度。在实现过程中,我们使用了图的邻接矩阵来表示图。
阅读全文