opencv如何求两条线的角点?线用cv::Vec4f表示,是从cv::fitLine()函数得到的
时间: 2024-02-07 07:02:04 浏览: 171
要求两条线的交点,可以先将两条线的参数转换成点斜式表示,然后解方程求出交点。
具体来说,可以使用cv::Vec4f表示的两条直线分别表示为:
```
line1: (x1, y1) + t1*(dx1, dy1)
line2: (x2, y2) + t2*(dx2, dy2)
```
其中,(x1, y1)和(x2, y2)是直线上的任意一点,(dx1, dy1)和(dx2, dy2)是直线的方向向量,t1和t2是参数。
将上述两个式子联立,得到:
```
x1 + t1*dx1 = x2 + t2*dx2
y1 + t1*dy1 = y2 + t2*dy2
```
变形得到:
```
t1*dx1 - t2*dx2 = x2 - x1
t1*dy1 - t2*dy2 = y2 - y1
```
将上述方程组写成矩阵形式:
```
[ dx1 -dx2 ] [ t1 ] [ x2-x1 ]
[ dy1 -dy2 ] [ t2 ] = [ y2-y1 ]
```
解出t1和t2,代入原方程得到交点的坐标。求解矩阵的逆矩阵可以使用cv::invert()函数。
下面是示例代码:
```cpp
cv::Vec4f line1 = ...; // 第一条线
cv::Vec4f line2 = ...; // 第二条线
cv::Mat A(2, 2, CV_32F);
A.at<float>(0, 0) = line1[0];
A.at<float>(0, 1) = -line2[0];
A.at<float>(1, 0) = line1[1];
A.at<float>(1, 1) = -line2[1];
cv::Mat b(2, 1, CV_32F);
b.at<float>(0) = line2[2] - line1[2];
b.at<float>(1) = line2[3] - line1[3];
cv::Mat t;
cv::invert(A, t, cv::DECOMP_SVD);
cv::Mat params = t * b;
float x = line1[0] + params.at<float>(0) * line1[2];
float y = line1[1] + params.at<float>(0) * line1[3];
cv::Point2f intersection(x, y);
```
其中,intersection就是两条直线的交点。
阅读全文