std::vector<LaserData> simulateLaserScan(const Robot& robot, const Map& map) { std::vector<LaserData> laser_data; const double start_angle = robot.theta - robot.laser_fov / 2; const double end_angle = robot.theta + robot.laser_fov / 2; for (double angle = start_angle; angle <= end_angle; angle += 0.1) { double x = robot.x; double y = robot.y; double range = robot.laser_range; while (range > 0) { x += range * cos(angle); y += range * sin(angle); if (x < 0 || y < 0 || x >= MAP_WIDTH || y >= MAP_HEIGHT) { range = 0; // 超出地图范围 } else if (map.data[(int)x][(int)y] == 1) { range = 0; // 障碍物 } else { range -= 1; // 每次减少1 } } laser_data.push_back({robot.laser_range - range, angle}); } return laser_data; }

时间: 2024-02-15 13:28:28 浏览: 170
这段代码是一个模拟激光雷达扫描的函数。函数接受一个机器人对象和地图对象作为输入,返回一个激光数据的向量。函数首先计算出激光雷达扫描的起始角度和结束角度,然后从起始角度到结束角度以0.1度为间隔进行循环。在循环内部,函数通过机器人的位置和当前角度计算出激光射线的终点位置,并检查终点是否超出地图范围或者是否与障碍物相撞。如果超出地图范围或者与障碍物相撞,激光射线的长度就是机器人到终点的距离;否则,激光射线的长度每次减少1,直到终点超出激光雷达的最大量程或者与障碍物相撞。最后,函数将每个角度上的激光数据加入到向量中,并返回向量。
相关问题

import React, { useState, PropsWithChildren } from "react" interface AppStateValue { username: string shoppingCart: { id: number; name: string }[] } const defaultContextValue: AppStateValue = { username: "JOKER", shoppingCart: [], } export const appContext = React.createContext(defaultContextValue) export const appSetStateContext = React.createContext< React.Dispatch<React.SetStateAction<AppStateValue>> | undefined >(undefined) export const DemoStateProvider: React.FC<PropsWithChildren<{}>> = props => { const [state, setState] = useState(defaultContextValue) return ( <appContext.Provider value={state}> <appSetStateContext.Provider value={setState}> {props.children} </appSetStateContext.Provider> </appContext.Provider> ) } import React, { useContext } from "react" import styles from "./Robot.module.css" import { appContext, appSetStateContext } from "../demoState" interface RobotProps { id: number name: string email: string } const Robot: React.FC<RobotProps> = ({ id, name, email }) => { const value = useContext(appContext) const setState = useContext(appSetStateContext) const addToCart = () => { console.log(setState, "@@") if (setState) { // 思考: 同学们可以想一想如何化简这里的代码 setState(state => { console.log(state, "??") return { ...state, shoppingCart: [...state.shoppingCart, { id, name }], } }) } } return ( <div className={styles.cardContainer}> <img alt='robot' src={`https://robohash.org/${id}`} /> <h2>{name}</h2> <p>{email}</p> <p>作者:{value.username}</p> <button onClick={addToCart}>加入购物车</button> </div> ) } export default Robot console.log(setState, "@@") 为什么这里式undefined

这里的`setState`是在函数组件中使用`useContext`从`appSetStateContext`上下文中获取的。如果在组件树中没有提供`appSetStateContext`的上下文,那么`setState`就会是`undefined`。通常情况下,这种情况会发生在组件树的根节点处没有提供`appSetStateContext`的情况下。

``` #ifndef ROBOT_SERIAL_H #define ROBOT_SERIAL_H #include <rclcpp/rclcpp.hpp> #include <geometry_msgs/msg/twist.hpp> #include "robot_msgs/msg/serial_full_key.hpp" #include "robot_msgs/msg/serial_segment_key.hpp" #include "msg_serialize.h" #include "serialPro.h" namespace my_serial { message_data Head { uint64_t SOF =0xAA; //头校验 uint64_t length = 0; //长度 uint64_t cmd_id = 0x00; //命令字 }; message_data password_send_t { uint64_t password1; //密码片段 uint64_t password2; }; message_data password_receive_t { int64_t password; //密码 }; message_data Tail { uint64_t crc16 =0xBB; //尾校验 }; class MySerial : public sp::serialPro<Head,Tail> { public: MySerial() = default; MySerial(std::string s, int band): sp::serialPro<Head,Tail>(s,band){ registerChecker([](const Head& head)-> int { return head.SOF != 0xAA; }); //头校验 registerChecker([](const Tail& tail, const uint8_t*, const int&)-> int { return tail.crc16 != 0xBB; }); setGetId([](const Head& head)-> int { return head.cmd_id;}); //返回命令字 setGetLength([](const Head& head)-> int{ return (int)head.length; }); //返回长度 } }; } class RobotSerial : public rclcpp::Node { private: my_serial::MySerial serial; rclcpp::Clock rosClock; rclcpp::Publisher<robot_msgs::msg::SerialFullKey>::SharedPtr FullKeyPublisher; rclcpp::Subscription<robot_msgs::msg::SerialSegmentKey>::SharedPtr SegmentKeySubscriber; void SegmentKeyCallback(const robot_msgs::msg::SerialSegmentKey::SharedPtr msg){ my_serial::Head head; my_serial::Tail tail; my_serial::password_send_t password_send{ (uint64_t)(msg->segment_key_1), (uint64_t)(msg->segment_key_2), }; head.length=sizeof(my_serial::password_send_t); head.cmd_id=0; serial.write(head,password_send,tail); RCLCPP_INFO(this->get_logger(),"serial write:%lu,%lu",msg->segment_key_1,msg->segment_key_2); } public: explicit RobotSerial() : Node("robot_serial_node"){ declare_parameter("serial_name", "/dev/pts/3"); serial =std::move(my_serial::MySerial(get_parameter("serial_name").as_string(),115200)); RCLCPP_INFO(this->get_logger(),"robot_serial init success"); serial.registerCallback(1,[this](const my_serial::password_receive_t& msg){ robot_msgs::msg::SerialFullKey _fullKey; _fullKey.full_key=msg.password; FullKeyPublisher->publish(_fullKey); }); FullKeyPublisher = create_publisher<robot_msgs::msg::SerialFullKey>("/serial/full_key_",1); SegmentKeySubscriber = create_subscription<robot_msgs::msg::SerialSegmentKey>("/serial/segment_key_",1, std::bind(&RobotSerial::SegmentKeyCallback,this,std::placeholders::_1)); serial.spin(true); } }; #endif //RDBOT_SERIAL_H```解释

<think>好的,我现在要仔细分析用户提供的C++代码,并解释它的结构和功能。用户可能希望了解这段代码在ROS 2中的用途,以及各个部分是如何协作的。首先,我需要确定代码的整体框架,然后逐步解析每个部分的作用。 首先,代码开头是头文件保护宏`#ifndef ROBOT_SERIAL_H`和`#define ROBOT_SERIAL_H`,防止重复包含。接下来包含了一些ROS 2的头文件,比如`rclcpp/rclcpp.hpp`和`geometry_msgs/msg/twist.hpp`,说明这个模块与ROS 2相关,可能用于机器人控制。还包含了自定义的消息类型,如`robot_msgs/msg/serial_full_key`和`serial_segment_key`,以及`msg_serialize.h`和`serialPro.h`,后者可能涉及串口通信的库。 接下来是命名空间`my_serial`,里面定义了多个`message_data`结构体,如`Head`、`password_send_t`、`password_receive_t`和`Tail`。这些结构体可能用于串口通信的数据帧结构。`Head`包含起始标志、长度和命令字;`Tail`包含CRC校验。`password_send_t`有两个密码片段,而`password_receive_t`有一个完整的密码字段。 然后,`MySerial`类继承自`sp::serialPro<Head,Tail>`,看起来是一个自定义的串口处理类。构造函数中设置了校验函数和获取命令字、长度的回调。这里使用了C++11的lambda表达式来定义校验逻辑,例如检查头部的SOF是否为0xAA,尾部的CRC是否为0xBB。这可能用于验证数据帧的完整性。 接下来是`RobotSerial`类,继承自`rclcpp::Node`,说明这是一个ROS 2节点。私有成员包括`MySerial`实例、ROS时钟、发布器和订阅器。`SegmentKeyCallback`是订阅回调函数,当接收到`SerialSegmentKey`消息时,构造包含密码片段的数据帧并通过串口发送。这里使用了`serial.write`方法,并记录日志。 在构造函数中,声明了参数`serial_name`,默认可能是串口设备路径。初始化`MySerial`实例,设置波特率为115200。注册了一个回调函数,当接收到命令字为1的数据时,处理`password_receive_t`消息,发布完整的密码到`/serial/full_key_`主题。同时,创建了发布器和订阅器,分别用于发布完整密钥和订阅分段密钥。最后调用`serial.spin(true)`启动串口通信的线程。 现在需要确认各个部分如何交互。订阅者接收分段密钥,将其通过串口发送;当串口接收到响应(命令字1),则发布完整密钥。可能的应用场景是,通过串口与外部设备通信,将分段的密钥组合成完整的密钥,并在ROS网络中发布。 需要注意代码中的一些细节,比如`message_data`可能来自`msg_serialize.h`,用于序列化数据。`sp::serialPro`可能是一个模板类,处理数据帧的组装和解析。校验函数通过lambda注册,确保数据的正确性。`spin(true)`可能启动一个线程持续监听串口数据。 用户可能想知道这段代码在机器人系统中的角色,比如负责安全通信或密钥交换。此外,需要解释ROS 2中的发布-订阅机制,以及如何与串口通信结合使用。可能还需要指出潜在的问题,比如校验过于简单(0xAA和0xBB可能不足以确保数据完整性),或者线程安全等问题。 总结来说,代码实现了一个ROS 2节点,负责通过串口与外部设备交换密钥信息,使用自定义的串口协议进行数据封装和校验,利用ROS的消息机制进行通信。需要进一步验证数据结构的正确性以及实际应用中的可靠性。</think>以下是对提供的C++代码的逐步解释: --- ### 一、代码结构概览 这是一个基于ROS 2框架的串口通信节点实现,主要功能: 1. 接收分段密钥消息,通过串口发送给外部设备 2. 监听串口返回的完整密钥,发布到ROS网络 3. 使用自定义的串口协议封装数据 --- ### 二、核心组件解析 #### 1. 数据结构定义 (`my_serial`命名空间) ```cpp message_data Head { // 数据帧头 uint64_t SOF = 0xAA; // 帧起始标志 uint64_t length = 0; // 数据长度 uint64_t cmd_id = 0x00;// 命令标识符 }; message_data password_send_t { // 发送数据结构 uint64_t password1; // 密钥片段1 uint64_t password2; // 密钥片段2 }; message_data password_receive_t { // 接收数据结构 int64_t password; // 完整密钥 }; message_data Tail { // 数据帧尾 uint64_t crc16 = 0xBB; // 校验码 }; ``` #### 2. 串口处理类 (`MySerial`) ```cpp class MySerial : public sp::serialPro<Head,Tail> { public: MySerial(std::string s, int band) : sp::serialPro<Head,Tail>(s,band) { // 注册校验函数 registerChecker([](const Head& head)-> int { return head.SOF != 0xAA; // 校验帧头 }); registerChecker([](const Tail& tail, ...)-> int { return tail.crc16 != 0xBB; // 校验帧尾 }); // 设置数据解析回调 setGetId([](const Head& head)-> int { return head.cmd_id; // 获取命令字 }); setGetLength([](const Head& head)-> int { return (int)head.length; // 获取数据长度 }); } }; ``` --- ### 三、ROS节点实现 (`RobotSerial`类) #### 1. 节点初始化 ```cpp explicit RobotSerial() : Node("robot_serial_node") { // 配置串口参数 declare_parameter("serial_name", "/dev/pts/3"); serial = std::move(my_serial::MySerial( get_parameter("serial_name").as_string(), 115200 )); // 注册数据接收回调 serial.registerCallback(1, [this](const password_receive_t& msg) { robot_msgs::msg::SerialFullKey _fullKey; _fullKey.full_key = msg.password; FullKeyPublisher->publish(_fullKey); // 发布完整密钥 }); // 创建ROS通信接口 FullKeyPublisher = create_publisher<SerialFullKey>("/serial/full_key_",1); SegmentKeySubscriber = create_subscription<SerialSegmentKey>( "/serial/segment_key_", 1, std::bind(&RobotSerial::SegmentKeyCallback, this, _1) ); serial.spin(true); // 启动串口监听线程 } ``` #### 2. 订阅回调处理 ```cpp void SegmentKeyCallback(const SerialSegmentKey::SharedPtr msg) { my_serial::Head head; my_serial::Tail tail; my_serial::password_send_t password_send{ (uint64_t)(msg->segment_key_1), (uint64_t)(msg->segment_key_2) }; head.length = sizeof(password_send_t); head.cmd_id = 0; serial.write(head, password_send, tail); // 发送数据帧 RCLCPP_INFO(...); // 记录日志 } ``` --- ### 四、工作流程 1. **数据发送路径** ``` ROS网络接收SegmentKey → 封装数据帧 → 串口发送 → 外部设备 ``` 2. **数据接收路径** ``` 串口接收数据 → 校验解析 → 触发回调 → 发布FullKey到ROS网络 ``` --- ### 五、关键设计特点 1. **协议封装**:使用模板类`serialPro`实现帧头/帧尾的自动化处理 2. **异步通信**:通过`spin(true)`启动独立线程处理串口数据 3. **可扩展性**:通过`cmd_id`实现多命令类型的支持 4. **参数配置**:使用ROS参数系统配置串口设备路径 --- ### 六、潜在改进方向 1. 增强校验机制(当前使用固定值0xAA/0xBB校验过于简单) 2. 添加超时重传机制 3. 支持动态波特率配置 4. 增加数据加密传输功能 该实现展示了典型的ROS 2与硬件接口的集成模式,可作为嵌入式系统与ROS通信的参考设计。
阅读全文

相关推荐

#include <ros/ros.h> #include <robot_audio/robot_iat.h> #include <robot_audio/Collect.h> #include <robot_audio/robot_tts.h> #include <iostream> #include <string> using namespace std; class interaction{ public: interaction(); string voice_collect(); //语音采集 string voice_dictation(const char* filename); //语音听写 string voice_tts(const char* text); //语音合成 private: ros::NodeHandle n; //创建一个节点句柄 ros::ServiceClient collect_client,dictation_client,tts_client; //创建客户端 }; interaction::interaction(){ collect_client = n.serviceClient<robot_audio::Collect>("voice_collect"); //定义语音采集客户端 dictation_client = n.serviceClient<robot_audio::robot_iat>("voice_iat"); //定义语音听写客户端 tts_client = n.serviceClient<robot_audio::robot_tts>("voice_tts"); //定义语音合成客户端 } string interaction::voice_collect(){ //请求"voice_collect"服务,返回音频保存位置 ros::service::waitForService("voice_collect"); robot_audio::Collect srv; srv.request.collect_flag = 1; collect_client.call(srv); return srv.response.voice_filename; } string interaction::voice_dictation(const char* filename){ //请求"voice_dictation"服务,返回听写出的文本 ros::service::waitForService("voice_iat"); robot_audio::robot_iat srv; cout<<"filename is"<<filename<<endl; srv.request.audiopath = filename; dictation_client.call(srv); cout<<"ddd is"<<srv.response.text.c_str()<<endl; return srv.response.text; } string interaction::voice_tts(const char* text){ //请求"voice_tts"服务,返回合成的文件目录 ros::service::waitForService("voice_tts"); robot_audio::robot_tts srv; srv.request.text = text; tts_client.call(srv); string cmd= "play "+srv.response.audiopath; system(cmd.c_str()); sleep(1); return srv.response.audiopath; } int main(int argc,char **argv){ ros::init(argc,argv,"interaction"); interaction audio; //创建一个交互实例 string dir,text; //创建两个字符串变量 while(ros::ok()){ dir = audio.voice_collect(); //采集语音 cout<<"dir is"<<dir.c_str()<<endl; text = audio.voice_dictation(dir.c_str()).c_str(); //语音听写 cout<<"text is"<<text.c_str()<<endl; if(text.find("元宝元宝") != string::npos){ audio.voice_tts("哎,什么事呀"); //合成应答语音 } } return 0; }讲这段语音唤醒代码修改成py

分析下列程序的运行namespace nav_core { /** * @class BaseLocalPlanner * @brief Provides an interface for local planners used in navigation. All local planners written as plugins for the navigation stack must adhere to this interface. / class BaseLocalPlanner{ public: /* * @brief Given the current position, orientation, and velocity of the robot, compute velocity commands to send to the base * @param cmd_vel Will be filled with the velocity command to be passed to the robot base * @return True if a valid velocity command was found, false otherwise / virtual bool computeVelocityCommands(geometry_msgs::Twist& cmd_vel) = 0; /* * @brief Check if the goal pose has been achieved by the local planner * @return True if achieved, false otherwise / virtual bool isGoalReached() = 0; /* * @brief Set the plan that the local planner is following * @param plan The plan to pass to the local planner * @return True if the plan was updated successfully, false otherwise / virtual bool setPlan(const std::vector<geometry_msgs::PoseStamped>& plan) = 0; /* * @brief Constructs the local planner * @param name The name to give this instance of the local planner * @param tf A pointer to a transform listener * @param costmap_ros The cost map to use for assigning costs to local plans / virtual void initialize(std::string name, tf2_ros::Buffer tf, costmap_2d::Costmap2DROS* costmap_ros) = 0; /** * @brief Virtual destructor for the interface */ virtual ~BaseLocalPlanner(){} protected: BaseLocalPlanner(){} }; }; // namespace nav_core #endif // NAV_CORE_BASE_LOCAL_PLANNER_H

In member function ‘virtual bool xarm_control::XArmHW::init(ros::NodeHandle&, ros::NodeHandle&)’: /home/sparks/xarm_ws/src/xarm_ros/xarm_controller/src/xarm_hw.cpp:155:3: error: ‘hw_nh_’ was not declared in this scope; did you mean ‘hw_ns_’? 155 | hw_nh_ = robot_hw_nh; | ^~~~~~ | hw_ns_ /home/sparks/xarm_ws/src/xarm_ros/xarm_controller/src/xarm_hw.cpp:156:3: error: ‘root_nh_’ was not declared in this scope; did you mean ‘root_nh’? 156 | root_nh_ = root_nh; | ^~~~~~~~ | root_nh /home/sparks/xarm_ws/src/xarm_ros/xarm_controller/src/xarm_hw.cpp:206:3: error: ‘locked_ip_key_’ was not declared in this scope 206 | locked_ip_key_ = "/uf_robot/" + robot_ip; | ^~~~~~~~~~~~~~ /home/sparks/xarm_ws/src/xarm_ros/xarm_controller/src/xarm_hw.cpp:225:48: error: no matching function for call to ‘xarm_api::XArmDriver::init(ros::NodeHandle&, std::string&, bool)’ 225 | xarm_driver_.init(robot_hw_nh, robot_ip, true); | ^ In file included from /home/sparks/xarm_ws/src/xarm_ros/xarm_controller/include/xarm_controller/xarm_hw.h:36, from /home/sparks/xarm_ws/src/xarm_ros/xarm_controller/src/xarm_hw.cpp:8: /home/sparks/xarm_ws/src/xarm_ros/xarm_api/include/xarm_api/xarm_driver.h:21:14: note: candidate: ‘void xarm_api::XArmDriver::init(ros::NodeHandle&, std::string&)’ 21 | void init(ros::NodeHandle& root_nh, std::string &server_ip); | ^~~~ /home/sparks/xarm_ws/src/xarm_ros/xarm_api/include/xarm_api/xarm_driver.h:21:14: note: candidate expects 2 arguments, 3 provided /home/sparks/xarm_ws/src/xarm_ros/xarm_controller/src/xarm_hw.cpp: In destructor ‘virtual xarm_control::XArmHW::~XArmHW()’: /home/sparks/xarm_ws/src/xarm_ros/xarm_controller/src/xarm_hw.cpp:258:3: error: ‘root_nh_’ was not declared in this scope 258 | root_nh_.setParam(locked_ip_key_, false); | ^~~~~~~~ /home/sparks/xarm_ws/src/xarm_ros/xarm_controller/src/xarm_hw.cpp:258:21: error: ‘locked_ip_key_’ was not declared in this scope 258 | root_nh_.setParam(locked_ip_key_, false); | ^~~~~~~~~~~~~~ /home/sparks/xarm_ws/src/xarm_ros/xarm_controller/src/xarm_hw.cpp: In member function ‘virtual void xarm_control::XArmHW::write(const ros::Time&, const ros::Duration&)’: /home/sparks/xarm_ws/src/xarm_ros/xarm_controller/src/xarm_hw.cpp:456:5: error: ‘hw_nh_’ was not declared in this scope; did you mean ‘hw_ns_’? 456 | hw_nh_.param<float>("velo_duration", velo_duration, VELO_DURATION); | ^~~~~~ | hw_ns_ /home/sparks/xarm_ws/src/xarm_ros/xarm_controller/src/xarm_hw.cpp:456:18: error: expected primary-expression before ‘float’ 456 | hw_nh_.param<float>("velo_duration", velo_duration, VELO_DURATION); | ^~~~~ make[2]: *** [xarm_ros/xarm_controller/CMakeFiles/xarm_hw.dir/build.make:63:xarm_ros/xarm_controller/CMakeFiles/xarm_hw.dir/src/xarm_hw.cpp.o] 错误 1 make[1]: *** [CMakeFiles/Makefile2:6937:xarm_ros/xarm_controller/CMakeFiles/xarm_hw.dir/all] 错误 2 make: *** [Makefile:141:all] 错误 2 如何解决

#include "def.h" #include "utils/maths.h" //用户注意;接口需要如下声明 extern "C"_declspec(dllexport) PlayerTask player_plan(const WorldModel* model, int robot_id); enum ball_near //PenaltyArea { outOfOrbit, onOrbit, shoot }; PlayerTask player_plan(const WorldModel* model, int robot_id){ PlayerTask task; const point2f& opp_goal = model->get_place_pos(); const float pi = 3.1415926; const float& circleR = 30; const float& DetAngle = 0.6; const point2f& goal = FieldPoint::Goal_Center_Point; const point2f& ball = model->get_ball_pos(); const point2f& kicker = model->get_our_player_pos(robot_id); const float& dir = model->get_our_player_dir(robot_id); ball_near orbit; point2f shootPosOnOrbit = ball + Maths::vector2polar(circleR, (ball - opp_goal).angle()); float toShootDir = fabs((kicker - ball).angle() - (ball - opp_goal).angle()); //(kicker - shootPosOnOrbit).length(); float toBallDist = (kicker - ball).length(); float toOppGoalDir = (opp_goal - kicker).angle(); float toBallDir = (ball - kicker).angle(); point2f robotBallAcrossCirclePoint = ball + Maths::vector2polar(circleR, (kicker - ball).angle()); point2f AntishootPosOnOrbit = ball + Maths::vector2polar(circleR, (opp_goal - ball).angle()); point2f BallToRobot = kicker - ball; if (toBallDist >circleR + 10) orbit = outOfOrbit; else if (toShootDir > 1) orbit = onOrbit; else orbit = shoot; bool getBall = toBallDist < 10; float diffdir_onorbit = 0; float b2r = BallToRobot.angle(); float o2b = (ball - opp_goal).angle(); bool add; switch (orbit) { case outOfOrbit: task.target_pos = robotBallAcrossCirclePoint; task.orientate = toOppGoalDir; break; case onOrbit: if (b2r * o2b >0){ if (b2r > 0){ if (b2r > o2b) add = false; else add = true; } else{ if (b2r > o2b) add = false; else add = true; } } else{ if (b2r > 0) add = true; else add = false; } if (add) { //+ task.target_pos = ball + Maths::vector2polar(circleR, BallToRobot.angle() + DetAngle); task.orientate = toOppGoalDir; } else { //- task.target_pos = ball + Maths::vector2polar(circleR, BallToRobot.angle() - DetAngle); task.orientate = toOppGoalDir; } break; case shoot: task.target_pos = ball + Maths::vector2polar(5, (ball - opp_goal).angle()); task.orientate = toOppGoalDir; task.needKick = true; task.flag = 1; if (toBallDist < 10 && fabs(model->get_our_player_dir(robot_id) - task.orientate) < 0.15){ task.kickPower = 60; } break;

大家在看

recommend-type

NPPExport_0.3.0_32位64位版本.zip

Notepad++ NppExport插件,包含win32 和 x64 两个版本。
recommend-type

H.323协议详解

H.323详解,讲的很详细,具备参考价值!
recommend-type

单片机与DSP中的基于DSP的PSK信号调制设计与实现

数字调制信号又称为键控信号, 其调制过程是用键控的方法由基带信号对载频信号的振幅、频率及相位进行调制。这种调制的最基本方法有三种: 振幅键控(ASK)、频移键控(FSK)、相移键控(PSK), 同时可根据所处理的基带信号的进制不同分为二进制和多进制调制(M进制)。多进制数字调制与二进制相比, 其频谱利用率更高。其中, QPSK (即4PSK) 是MPSK (多进制相移键控) 中应用较广泛的一种调制方式。为此, 本文研究了基于DSP的BPSK以及DPSK的调制电路的实现方法, 并给出了DSP调制实验的结果。   1 BPSK信号的调制实现   二进制相移键控(BPSK) 是多进制相移键控(M
recommend-type

DB2创建索引和数据库联机备份之间有冲突_一次奇特的锁等待问题案例分析-contracted.doc

在本文中将具体分析一个 DB2 数据库联机备份期间创建索引被锁等待的实际案例,使读者能够了解这一很有可能经常发生的案例的前因后果,在各自的工作场景能够有效的避免该问题,同时还可以借鉴本文中采用的 DB2 锁等待问题的分析方法。
recommend-type

IQ失衡_IQ失衡;I/Qimbalance;_IQ不均衡_

IQ失衡对OFDM系统的影响相关研究论文资料

最新推荐

recommend-type

基于Andorid的音乐播放器项目改进版本设计.zip

基于Andorid的音乐播放器项目改进版本设计实现源码,主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者,也可作为课程设计、期末大作业。
recommend-type

uniapp-machine-learning-from-scratch-05.rar

uniapp-machine-learning-from-scratch-05.rar
recommend-type

Windows下操作Linux图形界面的VNC工具

在信息技术领域,能够实现操作系统之间便捷的远程访问是非常重要的。尤其在实际工作中,当需要从Windows系统连接到远程的Linux服务器时,使用图形界面工具将极大地提高工作效率和便捷性。本文将详细介绍Windows连接Linux的图形界面工具的相关知识点。 首先,从标题可以看出,我们讨论的是一种能够让Windows用户通过图形界面访问Linux系统的方法。这里的图形界面工具是指能够让用户在Windows环境中,通过图形界面远程操控Linux服务器的软件。 描述部分重复强调了工具的用途,即在Windows平台上通过图形界面访问Linux系统的图形用户界面。这种方式使得用户无需直接操作Linux系统,即可完成管理任务。 标签部分提到了两个关键词:“Windows”和“连接”,以及“Linux的图形界面工具”,这进一步明确了我们讨论的是Windows环境下使用的远程连接Linux图形界面的工具。 在文件的名称列表中,我们看到了一个名为“vncview.exe”的文件。这是VNC Viewer的可执行文件,VNC(Virtual Network Computing)是一种远程显示系统,可以让用户通过网络控制另一台计算机的桌面。VNC Viewer是一个客户端软件,它允许用户连接到VNC服务器上,访问远程计算机的桌面环境。 VNC的工作原理如下: 1. 服务端设置:首先需要在Linux系统上安装并启动VNC服务器。VNC服务器监听特定端口,等待来自客户端的连接请求。在Linux系统上,常用的VNC服务器有VNC Server、Xvnc等。 2. 客户端连接:用户在Windows操作系统上使用VNC Viewer(如vncview.exe)来连接Linux系统上的VNC服务器。连接过程中,用户需要输入远程服务器的IP地址以及VNC服务器监听的端口号。 3. 认证过程:为了保证安全性,VNC在连接时可能会要求输入密码。密码是在Linux系统上设置VNC服务器时配置的,用于验证用户的身份。 4. 图形界面共享:一旦认证成功,VNC Viewer将显示远程Linux系统的桌面环境。用户可以通过VNC Viewer进行操作,如同操作本地计算机一样。 使用VNC连接Linux图形界面工具的好处包括: - 与Linux系统的图形用户界面进行交互,便于进行图形化操作。 - 方便的远程桌面管理,尤其适用于需要通过图形界面来安装软件、编辑配置文件、监控系统状态等场景。 - 跨平台操作,允许Windows用户在不离开他们熟悉的操作系统环境下访问Linux服务器。 除了VNC之外,还有一些其他的图形界面远程访问工具,例如: - RDP(Remote Desktop Protocol):通常与Windows远程桌面连接使用,但在Linux中也有相应的实现(如FreeRDP)。 - TeamViewer、AnyDesk等:这些工具提供了跨平台的远程桌面访问能力,虽然它们不是专为Linux设计,但它们都能很好地支持Linux系统。 在使用这些工具时,用户应该注意以下几点: - 安全性:确保使用强密码以及加密连接,防止未经授权的访问。 - 网络环境:需要保证网络的稳定性和带宽,以获得良好的远程桌面体验。 - 更新与维护:定期更新客户端和服务器端软件,确保安全性以及新功能的使用。 总结以上内容,Windows连接Linux图形界面的工具是实现跨平台远程管理的有效手段,特别是对于需要图形化操作的场景。VNC Viewer是一个应用广泛且成熟的工具,但选择适合自身需求的远程桌面工具对于提高工作效率与安全性至关重要。
recommend-type

【SketchUp Ruby API:从入门到精通】

# 摘要 本论文深入介绍了SketchUp Ruby API的使用与开发,为用户提供了一套从基础到进阶再到高级特性的完整学习路径。文章首先介绍了SketchUp Ruby API的基本概念、结构以及如何编写基础插件,并通过实例演示了3D模型的创建和编辑、用户界面定制等进阶应用。接着,探讨了高级特性,例如材质渲染、网络功能以及AP
recommend-type

VMware虚拟机打开虚拟网络编辑器出现由于找不到vnetlib.dll,无法继续执行代码。重新安装程序可能会解决问题

<think>好的,我需要帮助用户解决VMware虚拟机中缺少vnetlib.dll导致无法打开虚拟网络编辑器的问题。用户提到已经尝试过重新安装程序,但可能没有彻底卸载之前的残留文件。根据提供的引用资料,特别是引用[2]、[3]、[4]、[5],问题通常是由于VMware卸载不干净导致的。 首先,我应该列出彻底卸载VMware的步骤,包括关闭相关服务、使用卸载工具、清理注册表和文件残留,以及删除虚拟网卡。然后,建议重新安装最新版本的VMware。可能还需要提醒用户在安装后检查网络适配器设置,确保虚拟网卡正确安装。同时,用户可能需要手动恢复vnetlib.dll文件,但更安全的方法是通过官方安
recommend-type

基于Preact的高性能PWA实现定期天气信息更新

### 知识点详解 #### 1. React框架基础 React是由Facebook开发和维护的JavaScript库,专门用于构建用户界面。它是基于组件的,使得开发者能够创建大型的、动态的、数据驱动的Web应用。React的虚拟DOM(Virtual DOM)机制能够高效地更新和渲染界面,这是因为它仅对需要更新的部分进行操作,减少了与真实DOM的交互,从而提高了性能。 #### 2. Preact简介 Preact是一个与React功能相似的轻量级JavaScript库,它提供了React的核心功能,但体积更小,性能更高。Preact非常适合于需要快速加载和高效执行的场景,比如渐进式Web应用(Progressive Web Apps, PWA)。由于Preact的API与React非常接近,开发者可以在不牺牲太多现有React知识的情况下,享受到更轻量级的库带来的性能提升。 #### 3. 渐进式Web应用(PWA) PWA是一种设计理念,它通过一系列的Web技术使得Web应用能够提供类似原生应用的体验。PWA的特点包括离线能力、可安装性、即时加载、后台同步等。通过PWA,开发者能够为用户提供更快、更可靠、更互动的网页应用体验。PWA依赖于Service Workers、Manifest文件等技术来实现这些特性。 #### 4. Service Workers Service Workers是浏览器的一个额外的JavaScript线程,它可以拦截和处理网络请求,管理缓存,从而让Web应用可以离线工作。Service Workers运行在浏览器后台,不会影响Web页面的性能,为PWA的离线功能提供了技术基础。 #### 5. Web应用的Manifest文件 Manifest文件是PWA的核心组成部分之一,它是一个简单的JSON文件,为Web应用提供了名称、图标、启动画面、显示方式等配置信息。通过配置Manifest文件,可以定义PWA在用户设备上的安装方式以及应用的外观和行为。 #### 6. 天气信息数据获取 为了提供定期的天气信息,该应用需要接入一个天气信息API服务。开发者可以使用各种公共的或私有的天气API来获取实时天气数据。获取数据后,应用会解析这些数据并将其展示给用户。 #### 7. Web应用的性能优化 在开发过程中,性能优化是确保Web应用反应迅速和资源高效使用的关键环节。常见的优化技术包括但不限于减少HTTP请求、代码分割(code splitting)、懒加载(lazy loading)、优化渲染路径以及使用Preact这样的轻量级库。 #### 8. 压缩包子文件技术 “压缩包子文件”的命名暗示了该应用可能使用了某种形式的文件压缩技术。在Web开发中,这可能指将多个文件打包成一个或几个体积更小的文件,以便更快地加载。常用的工具有Webpack、Rollup等,这些工具可以将JavaScript、CSS、图片等资源进行压缩、合并和优化,从而减少网络请求,提升页面加载速度。 综上所述,本文件描述了一个基于Preact构建的高性能渐进式Web应用,它能够提供定期天气信息。该应用利用了Preact的轻量级特性和PWA技术,以实现快速响应和离线工作的能力。开发者需要了解React框架、Preact的优势、Service Workers、Manifest文件配置、天气数据获取和Web应用性能优化等关键知识点。通过这些技术,可以为用户提供一个加载速度快、交互流畅且具有离线功能的应用体验。
recommend-type

从停机到上线,EMC VNX5100控制器SP更换的实战演练

# 摘要 本文详细介绍了EMC VNX5100控制器的更换流程、故障诊断、停机保护、系统恢复以及长期监控与预防性维护策略。通过细致的准备工作、详尽的风险评估以及备份策略的制定,确保控制器更换过程的安全性与数据的完整性。文中还阐述了硬件故障诊断方法、系统停机计划的制定以及数据保护步骤。更换操作指南和系统重启初始化配置得到了详尽说明,以确保系统功能的正常恢复与性能优化。最后,文章强调了性能测试
recommend-type

ubuntu labelme中文版安装

### LabelMe 中文版在 Ubuntu 上的安装 对于希望在 Ubuntu 系统上安装 LabelMe 并使用其中文界面的用户来说,可以按照如下方式进行操作: #### 安装依赖库 为了确保 LabelMe 能够正常运行,在开始之前需确认已安装必要的 Python 库以及 PyQt5 和 Pillow。 如果尚未安装 `pyqt5` 可通过以下命令完成安装: ```bash sudo apt-get update && sudo apt-get install python3-pyqt5 ``` 同样地,如果没有安装 `Pillow` 图像处理库,则可以通过 pip 工具来安装
recommend-type

全新免费HTML5商业网站模板发布

根据提供的文件信息,我们可以提炼出以下IT相关知识点: ### HTML5 和 CSS3 标准 HTML5是最新版本的超文本标记语言(HTML),它为网页提供了更多的元素和属性,增强了网页的表现力和功能。HTML5支持更丰富的多媒体内容,例如音视频,并引入了离线存储、地理定位等新功能。它还定义了与浏览器的交互方式,使得开发者可以更轻松地创建交互式网页应用。 CSS3是层叠样式表(CSS)的最新版本,它在之前的版本基础上,增加了许多新的选择器、属性和功能,例如圆角、阴影、渐变等视觉效果。CSS3使得网页设计师可以更方便地实现复杂的动画和布局,同时还能保持网站的响应式设计和高性能。 ### W3C 标准 W3C(World Wide Web Consortium)是一个制定国际互联网标准的组织,其目的是保证网络的长期发展和应用。W3C制定的标准包括HTML、CSS、SVG等,确保网页内容可以在不同的浏览器上以一致的方式呈现,无论是在电脑、手机还是其他设备上。W3C还对网页的可访问性、国际化和辅助功能提出了明确的要求。 ### 跨浏览器支持 跨浏览器支持是指网页在不同的浏览器(如Chrome、Firefox、Safari、Internet Explorer等)上都能正常工作,具有相同的视觉效果和功能。在网页设计时,考虑到浏览器的兼容性问题是非常重要的,因为不同的浏览器可能会以不同的方式解析HTML和CSS代码。为了解决这些问题,开发者通常会使用一些技巧来确保网页的兼容性,例如使用条件注释、浏览器检测、polyfills等。 ### 视频整合 随着网络技术的发展,现代网页越来越多地整合视频内容。HTML5中引入了`<video>`标签,使得网页可以直接嵌入视频,而不需要额外的插件。与YouTube和Vimeo等视频服务的整合,允许网站从这些平台嵌入视频或创建视频播放器,从而为用户提供更加丰富的内容体验。 ### 网站模板和官网模板 网站模板是一种预先设计好的网页布局,它包括了网页的HTML结构和CSS样式。使用网站模板可以快速地搭建起一个功能完整的网站,而无需从头开始编写代码。这对于非专业的网站开发人员或需要快速上线的商业项目来说,是一个非常实用的工具。 官网模板特指那些为公司或个人的官方网站设计的模板,它通常会有一个更为专业和一致的品牌形象,包含多个页面,如首页、服务页、产品页、关于我们、联系方式等。这类模板不仅外观吸引人,而且考虑到用户体验和SEO(搜索引擎优化)等因素。 ### 网站模板文件结构 在提供的文件名列表中,我们可以看到一个典型的网站模板结构: - **index.html**: 这是网站的首页文件,通常是用户访问网站时看到的第一个页面。 - **services.html**: 此页面可能会列出公司提供的服务或产品功能介绍。 - **products.html**: 这个页面用于展示公司的产品或服务的详细信息。 - **about.html**: 关于页面,介绍公司的背景、团队成员或历史等信息。 - **contacts.html**: 联系页面,提供用户与公司交流的方式,如电子邮件、电话、联系表单等。 - **css**: 这个文件夹包含网站的所有CSS样式文件,控制着网站的布局、颜色和字体等。 - **images**: 此文件夹存放网站中使用的图片资源。 - **js**: 这个文件夹包含所有JavaScript文件,这些文件用于实现网站的交互功能,如动画、表单验证等。 通过上述文件结构,开发者可以快速部署和自定义一个功能齐全的网站。对于技术人员来说,了解这些文件的作用和它们如何协同工作,是构建和维护网站的基础知识。对于非技术人员,了解这些概念有助于更好地与网页开发人员沟通,确保网站的设计和功能符合业务需求。
recommend-type

EMC VNX5100控制器SP更换全流程指南:新手到高手的必备技能

# 摘要 本文深入探讨了EMC VNX5100控制器的维护和管理。首先,文章介绍了EMC VNX5100控制器的基本概念和维护基础知识,随后详细解析了控制器硬件结构以及软件架构。第二章深入阐述了控制器硬件组件、存储接口及端口类型,以及Unisphere界面和VNX操作系统与固件。此外,本文还探讨了控制器的冗余和故障转移机制,包括主动-被动与主动-主动配置以及故障转移过程与监控。在SP更换方面,第三章详述了准备